
7 AD-AIZO 056 CARNEGIE-MELLON UNIV
PITTSBURGH PA DEPT

OF COMPUTER, -ETC F/ . 9/2
REAL TIME STATUS MONITORING FOR DISTRIBUTED SYSTEMS.U
AUG 82 Z SEGALL, A SINGH. R SNOOGRASS DASG6080-C-0051

UNCCASSIFIE. NL

EEEEElhEEEEEEE
EhEEEEllElIEEE
EIEEIIIEEEEII
EIEEEEEEEEIII
IEEEIIEIIIIEEE
EIIEEEIIIEIIIE

-II20000000000
,2 ' "~

* Real TimeStatus Monitoring
For Distributed Systems

C Z Segall, D. Slew~or~k,
A. Singh, R. Snodgras

27 August 198

FINAL REPORT

7 ~jDEPARTMENT

COMPUTER SCIENCE

DTiC
ELECTE

~ 8,09 as *

Accession For

lTIS GRA&I
•DTIC TA.
Utannouned COP_

Justification_ . I

Distribution/ _

Availability cdes Real Time Status Monitoring
Avail and/or

DIst Special For Distributed Systems

Z. Segall, D. Siewiorek,
A. Singh, R. Snodgrass

27 August 1982

FINAL REPORT

MULTIPROCESSOR PERFORMANCE EVALUATION GROUP

Copyright 1982 Carnegie-Mellon University

Supported by the Ballistic Missile Defense Advanced Technological Center under contract
DOOeWTVOW. The views and conclusions contained in this ducument are those of the authors and
should not be interpreted as representing the official policies, either expressed or implied, of the BMDATC
or the U.S. Government.

D)IS-hIBUTION 7STATEMENT A
Approved tot public ieleas"

.. st ibution Unlimited

Table of Contents
1. Research Review

1.1. Status of the Monitor 2
1.1.1. Software Engineering Aspects of Sensor Specification 3H
1.1.2. A System- Independent, Efficient Protocol3
1. 1.3. Efficiency of the Update Network 4

1.2. Synthetic Workload Generator- -Progress Report 5
1.3. Dormancy Study 7

2. An Integrated Instrumentation Environment for Multiprocessors 11
2.1. Introduction 11

2.1.1. Functionality of the lIE 13
2.2. Design of the lIE 15

2.2.1. The Instrumented Stimulus: Representation and Specification 17
2.2.2. Relational Monitor 21
2.2.3. Stimulus Controller 23
2.2.4. The Resident Monitor 24
2.2.5. Schema Management 26

2.3. Implementation 29
2.3.1. Background 30
2.3.2. Status 30

2.4. Conclusion 30
2.5. Acknowledgements 30

3. Synthetic Workload Generation for Experimentation with Multiprocessors 31

4. Abstract 3

4.1. Introduction 3
4.1.1. Background 38
4.1.2. Overview of Paper 37

4.2. Parallel Synthetic Programs -- Representation and Specification 37
4.2.1. The Representation 37
4.2.2. The Specification of a Parallel Synthetic Program 41

4.2.2. 1. Object Specification 41p
4.2.2.2. Programmable library of Actions 43
4.2.2.3. Subtask Specification -- Control Constructs 43

4.3. The Experimentation Environment 44
4.3.1. Setting Up Experiments 45

4.3. 1. 1. Repeatability of Experiments 45
4.3.1.2. Variation of Parameters 45
4.3.1 .3. Table Objects and the Variation of Parameters in Real Time 46

4.3.2. Starting and Running Experiments 47
4.3.2.1. External Event Generation 48

4.3.3. Timing Measurements 48
4.4. Design of the Experimentation Environment 48

4.4.1. Modular Decomposition 4

ii

4.5. Design of the Generation Mechanism on Cm* 50
4.6. Conclusion 52
4.7. Acknowledgements 52

Appendix I. Experimentation 53

1.1. MCT -- Measurements 54

Appendix II. User Interface Commands 57

11.1. VARY / QUERY / HOWLONG Command 57
11.2. AUTOMATIC Command 57
11.3. FIRE Command 58
11.4. MSGEVENT / GENSTOP Command 58
11.5. STATUS / TOTIME Command 59
11.6. ENABLE / DISABLE / TFINIT Command 59
11.7. RUNTIME Command 59

Appendix Ill. The B-language Grammar 61

5. The Cm Test Bed 65

5.1. Introduction 65
5.2. The Cm* Experimentation Environment 66

5.2.1. The Cm Hardware 66
5.2.2. Flexibility of the Switching Network 68
5.2.3. External Control of Experiments on Cm* 70
5.2.4. Experimentation-Environment Software 72

5.2.4.1. Operating Systems 72
5.2.4.2. Support Software 74
5.2.4.3. Support for Experimentation 74

5.3. Research in Distributed Syltems 77
5.3.1. Speedup 77

5.3.1.1. Theoretical and Practical Speedup 78
5.3.1.2. The Influence of Synchronization 79
5.3.1.3. The Placement of Processes 83
5.3.1.4. The Distribution of Data 84
5.3.1.5. Greater Than Linear Speedup? 87

5.3.2. Task-Force Organization 89
5.3.3. Hardware Reliability Tests 90

5.4. Summary 91

Acknowledgments 93

6. The Problem 95

6.1. The Cause and the Result 95
6.2. Definitions 96
6.3. The Impact of Complexity on Monitoring 98
6.4. Knowledge Representation 100

7. A Low Level Data Collection Mechanism 105

7.1. The Environment 106

J'4

iii

7.2. The Mechanism 108
7.3. Integrating Sampling and Tracing 110
7.4. Interaction with the Remote Monitor 111

7.4.1. Naming 111
7.4.2. Time 114

7.5. Sensor Specification 114
7.5.1. User-Defined Events 115
7.5.2. Syntax and Definitions 115
7.5.3. The Description File Preprocessor 116

7.6. An Example 118
7.7. Summary 119

8. Simon: A Simple Monitor for StarOS 121

8.1. Introduction 121
8.1.1. Objectives 121
8.1.2. A Paradigm for the Implementor 121
8.1.3. Overall Design 122
8.1.4. A Series of Implementations 123

8.2. Access Nodes 124
8.2.1. Capalnfo (ThisCaoa, Type, Cluster, Cm) 125
8.2.2. GetMpx (Nucleus, Mpx) 125
8.2.3. Library (lndex, Module) 125
8.2.4. ModuleAttributes (, Moduleld, NumberOfFunctions, NumberOfProcesses) 126
8.2.5. ModuleFunctions (M(, Function, NumberOfProcesses, InitStackSize) 126
8.2.6. ModulesLoaded (Userlnterface, Module, Name) 127
8.2.7. ModuleProcs (Module, Function, Process) 127
8.2.8. MpxStatus (MoxObiect, CurrentProc) 1'.7
8.2.9. ProcessAttributes (Process, IsActivated, RBRD, CPII, Cluster, Cm, FunctionNumber, 128

Module)
8.2.10. ProcCapas (Poe, Occupant) 128
8.2.11. ProcessorMpx (Mox, Cluster, Cm) 129
8.2.12. ProcessorUniverse (Confiaurator, Cluster, Cm, MemorySize, Status) 129
8.2.13. TimeStamp (Type, SubType, Args) 1'29
8.2.14. Userld (UserInterface, UserName) 130

8.3. Generic Operator Nodes 130
8.3.1. ApplyOp [Operation Domain 1 Domain 2] (Result); unary 130
8.3.2. Constant [Constant] (Constant); no input tuples 131
8.3.3. Count [MajorDomain MinorDomain] (Count); unary 131
8.3.4. Display [Name I ... Namen]; unary 131
8.3.5. Duration (Duration); unary 131
8.3.6. Join [Predicate Domain 1 Domain 2]; binary 131
8.3.7. Projection [NumDomains Domain1 ... DomainNumDomains]; unary 131
8.3.8. Selection [Predicate Domain I Domain]; unary 132
8.3.9. SelectConstant [Predicate Domain Constant]; unary 132

8.3.10. Sum [MajorDomain MinorDomain] (Sum); unary 132
8.4. Node Interconnection 132

8.4.1. Primitive Constructors 133

' gt

IV

8.4.1.1. (Create name newname (arg1 ... argd)) 133
8.4.1.2. (Link fromnode tonode) 133
8.4.1.3. (Unlink fromnode tonode) 134

8.4.2. Two Examples 134
8.4.3. Defining Structures 136

8.5. Conclusion 138
8.5.1. Abstraction 138
8.5.2. Extensions 138

8.5.2.1. Static Relations 139
8.5.2.2. Calculus-based Query Languages 139
8.5.2.3. Efficiency 139
8.5.2.4. Incomplete Information 139

8.5.3. Unresolved Issues 139
Appendix IV. Representation Issues 141

IV.1. Tuples 141
IV.2. Domain Types 141
IV.3. Arithmetic Operations on Temporal Domains 141

9. A General Monitoring Mechanism 143
9.1. Introduction 143
9.2. The Basic Design 143

9.2.1. EventSets 144
9.2.2. Receptacles 145 1
9.2.3. Event Records 145
9.2.4. The InitiateMonitoring Operation 145
9.2.5. Sensors 146
9.2.6. Notification 147
9.2.7. Summary 147

9.3. The Basic Implementation 147
9.3.1, _ .,.ptacleSets 148
9.3.2. The ReceptacleStore Operation 148

9.4. Implementation Issues 149
- 9.4.1. Internal State of a Receptacle 149

9.4.2. Notification 150
9.4.3. Operation Register 150
9.4.4. Restrictions 151
9.4.5. Compensation 151

9.5. The Stage I Specification 151
9.5.1. Receptacles 151
9.5.2. Notification 152
9.5.3. The ReceptacleStore Operation 152

9.6. The StarOS Implementation of Stage 1 153
9.6.1. ReceptacleSets 153
9.6.2. The ReceptacleStore Operation 154

9.7. The Medusa Implementation of Stage 1 154

v

10. Description File Specifications 157

10.1. Introduction 157
10.1.1. Syntax and Definitions 158
10.1.2. The Description File Preprocessor 158

10.2. Sensor Description File (SDF) 159
10.2.1. TaskForce 159
10.2.2. ObjectType 159
10.2.3. SensorProcess 159
10.2.4. Event 160
10.2.5. Domain 162
10.2.6. Generated Attributes 162
10.2.7. Require Files 162

10.2.7.1. Sensor Process Require Files 163
10.2.7.2. Object Type Require Files 163

10.2.8. Summary 163
10.3. Format Description File (FDF) 165

10.3.1. FieldTypes 165
10.3.2. Input 166
10.3.3. Default 166
10.3.4. General 166
10.3.5. Output 167
10.3.6. Internal Representation 167
10.3.7. Simon Description Format 167
10.3.8. Summary 168

11. The Cm' / Simon Protocol SpecifIcation 171

11.1. Introduction 171
11.2. EtherNet protocol 171
11.3. Object Identification 172
11.4. Packet Formats 172

11.4.1. Parameter Sizes 172
11.4.2. Command Format (Simon to Cm*) 172
11.4.3. Data Format (Cm* to Simon) 173

11.5. Simon Description Page Format 174
11.6. Initial Connection 175
11.7. Interaction with Simon 176

11.7.1. Simon Names 176
11.7.2. Event Numbers 176

Appendix V. Readable and Writable Entries 179

Appendix VI. Errors found by the Resident Monitor 181

vii

List of Figures
Figure 1: Experimentation Process in the lIE 13
Figure 2: lIE Components The arcs indicate transfer of data or control. 15
Figure 3: Stimulus Generation Steps 17
Figure 4: A Parallel Synthetic Program- Graph Representation 18
Figure 5: B-language program for the MPX 21
Figure 6: Queries for the MPX 22
Figure 7: Sensor Description for the MPX 26
Figure 8: High level organization of a schema 27
Figure 9: The Schema for the MPX. 28
Figure 10: Service Rate vs. Time for a Variable Number of Servers 29
Figure 11: The Components of Pegasus 35
Figure 12: A Bigraph Node 38
Figure 13: A Generalized Computation Node 39
Figure 14: Complex Arc Representation 40
Figure 15: A Parallel Synthetic Program 40
Figure 16: The $1gnitionBuffer as a Complex Arc 47
Figure 17: Detailed Decomposition 50
Figure 18: The Flow of Files 51
Figure 19: MCT versus Message Size for Varying Usage Patterns 55
Figure 20: Five-Cluster Cm* Configuration 66
Figure 21: Comparison of Integer Programming on Network and Multiprocessor 69

Configurations, Cases 1 and 2
Figure 22: Comparison of Integer Programming on Network and Multiprocessor 69

Configurations, Cases 3 through 5
Figure 23: The Cm Hardware Environment 71
Figure 24: The Integrated Instrumentation Environment 75
Figure 25: A Node Corresponding to a Subtask 76
Figure 26: Comparison of Speedup ror Different Methods of POE 80
Figure 27: Speedup of Molecular-Motion Simulation 82
Figure 28: Effects of Improved Processor Selection 84
Figure 29: Effects of Distribution of Data 85 p
Figure 30: The Crossover Phenomenon with the POE 86
Figure 31: Speedup of Quicksort 87
Figure 32: Speedup of Integer-Programming Computation 88
Figure 33: Speedup of Railway-Network Simulation 90

Figure 34: The position of DFPre in the program development process. 117
Figure 35: Configuration of the PDE task force 119

1. Research Review
This is the Final Report of research done at Carnegie-Mellon University by the Performance Evaluation

Group for the Balistic Missile Defense Advanced Technological Center, under contract DASG60-81.0077.

The area of research is instrumentation for distributed computing systems, and the period of research is

January 1981-August 1982.

In order to facilitate the transfer of technology between Carnegie-Mellon University and Balistic Mi sile

Defense Advanced Technological Center, three types of documents are provided. First, we provide status

reports on Status Monitor, Synthetic Workload Generator (Pegasus) and Dormancy Study. These are

updated versions of the status reports presented in the Interim Report. Second, the backbone of the

report consists of the following three papers accepted for publication or presentation by IEEE Transaction

on Computers, THe 3rd Conference on Distributed Computing Systems and Computer Magazine,

respectively:

* An Integrated Instrumentation Environment for Multiprocessors

* Synthetic Workload Generator for Experimentation with Multiprocessors

e Cm* - testbed

The exposing of the instrumentation concepts to the refereeing process is an integral part of our

concern for assuring the quality of research done under this contract for BMDATC.

Third, we provide a collection of documents concerning the specification, design and implementation of

the first stage Status Monitor. These documents present a detailed snapshot of the design decisions and

implementation problems faced by us in solving the problem of Monitoring Distributed Systems.

I,

I.

4 i -

2

1.1. Status of the Monitor
Work on the monitor has concentrated on three aspects: furthering the conceptual design,

implementing the lower level mechanisms of the monitor and designing and implementing the relational

monitor. At this point, we have a fairly complete idea of the tasks the various components perform and

how these components will interact. The components are:

StarMon, low level data collection under the StarOS operating system on CM*, consisting of two
processes:

Accountant interfaces to the Simon Accountant via the EtherNet;

MonProc performs name translation, enabling of events and miscellaneous

services.

Medic low level data collection under the Medusa operating system on Cm*;

Simon Accountant interfaces with the resident monitor (either StarMon or Medic using a systemn-
independent protocal;

Simon the 'computing engine' for deriving high level information from event records;

Control accepts queries from the user in a declarative language and translates these queries

into update networks for Simon.

At this point, the first three components are nearing completion. Once their condition is stable, sensors

will be placed throughout both StarOS and Medusa to provide a source of event records for Simon. The

structure of Simon has been implemented, although more work is necessary. The Control component has

been partially designed and is in the early stages of implementation. Also the a Sensor Definition facility

has been designed and implemented.

Although this structure has been anticipated since early in the project, there were several surprises

during the implementation stage. In particular, we found that

* specifying several parameters for a large number of sensors becomes a software engineering
problem requiring automatic assistance;

* ensuring that the ethernet protocol was system- independent, yet efficient, was rather difficult;

* the straightforward implementation of the update network within Simon was several orders of
magnitude too slow.

These issues will be dealt with in more detail in the remainder of this chapter.

3

1.1 .1. Software Engineering Aspects of Sensor Specification
During the initial development of the low level event collection mechanism for the Cm* monitoring

system, it became apparent that there were several procedural difficulties in the placement of sensors in

the StarOS and Medusa operating systems. One difficulty was that the Sensor macro (which generates

the event records) was becoming quite cumbersome. One design required twelve parameters for a typical

sensor involving three domains! Since the sensors were to be placed in critical portions of the operating

system, there was little room for error in the specification of these parameters. A second problem was the

assignment of event numbers; an incorrect event number in a Sensor macro would result in the absence of

event records of that type--a situation that might be difficult to detect by the user interacting with Simon.

Two sensors with the same event number would cause havoc within Simon. A third problem is maintaining

consistency between Simon's view of the world and the world as it actually is. This is especially tri

during the early development of the monitor, when the collection of sensors inside the operating syste

and the various attributes of those ser~sors, is changing frequently.

Finally, all these problems are exacerbated by the sheer number of sensors: we can easily envist

several hundred sensors in both StarOS and Medusa when the monitoring system has been fully

developed. The task of ensuring that all of these sensors, which are distributed among many source files,

are correct and consistent, both within each other and with Simon, is unmanageable if it remains a manual

one.

The solution was to create a database, called the sensor description file (SDF, which contains

information on the sensors defined in a given taskforce. As work progressed on designing the sensor

description file, it became apparent that the syntax (as well as the programs processing that syntax) were

general enough so that databases could be designed to contain information other than that related to the

sensors. In fact, the description files will be used to communicate all static information to Simon from

other programming environment tools.

1.1.2. A System-Independent, Efficient Protocol
The basic thesis of this research into monitoring is that the monitor must be capable of accepting

high-level, non-procedural queries of system behavior and transforming these queries into an executable

format, called an update network, using a wide variety of knowledge concerning the monitoring task.

Although some of this knowledge must be of a system-dependent nature, it is vital that the algorithms and

data structures which are using this knowledge be system independent. If the effort that goes into building

a knowledgeable monitor must be repeated for each new system to be monitored, this effort will not be

cost-effective.

4

There are several areas where this goal of system- independence was hard to achieve:

" naming;

" assumptions within Simon concerning the operating system;

* assumptions within Simon concerning the data collection mechanism.

In each case, the solution involved imbedding an abstract model of the environment in Simon, with the

resident monitor (either StarMon or Medic) performing the translation to the operations supported by the

operating system. As an example, consider naming, where the problem is in producing system-

independent names for operating system objects. The model used by Simon assumes names are

uninterpreted 21 -bit integers which can be passed over the EtherNet to or from the resident monitor.

StarMon uses a 16-bit field in the name to extract a capability for the object from an internal capability list.

Medic, on the other hand, can use the nam;e to directly arrive at the address of the object. The main

consideration is that the abstract model used by Simon must allow such a translation.

1.1.3. Efficiency of the Update Network
The first implementation of the update network was straightforward and, unfortunately, several orders of

magnitude too slow. The metric is event records per second, with the first implementation executing

about 2 event records per second. With each computer module in Cm* generating 2-5 event recods per

second (a minimally acceptable rate), Simn must contend with 80-250 event records per second from all of

Cm*. After several weeks of work, a rate of around 25 event records per second was achieved, still an

order of magnitude too slow. At that point, several other systems having similar characteristics were

considered, and a mechanism which could handle approximately 200 event records per second was

designed using the results of a recently published thesis.

p1

5

1.2. Synthetic Workload Generator--P rog ress Report
The conceptual design of the Synthetic Load Generator has been finalized. From an implementation

standpoint, most of the Load Generator Environment has been implemented on both the Medusa and

StarOS virtual machines (i.e. Cm* plus operating systems). A set of experiments have confirmed the initial

feasibility of the tool.

An extension to the Synthetic Workload Generator enabling the tool to be used in the feasibility domain

has been designed. The extensions are a software voting system and a fault inserter.

The following is the list of subtasks that are milestones for the project:

1. Functional Specification

2. Conceptual Design. This includes:

" The design of the B language, a behavioral description language for the specification of
the Load.

" The design of the support Environment on the virtual machine for the B language.

Design and implementation of the -Load Generator on the Medusa and StarOS operating
systems:

*Design and implementation of the logical modules that form the Load Generator. This
includes the modular decomposition of design and the specification of the inter-module
relationships.

o Design and imiplementation of the B language translator that maps the user

specification to the virtual machine.

3. Experimentation with the Synthetic Load Generator

4. Modifications and extensions to the current design based on feedback from the experimental
process, and the need to add additional functionality.

The first two milestones have been completed. The conceptual design of the Load Generator, as

described in this report, is portable over message-based, object-oriented systems. Many of the concepts

can be transported to other types of multi-computer architectures, including local area networks.

The design and implementation of the Load Generator Environment on both the Medusa and the StarOS

operating systems has been essentially completed. Special care has been taken in the design to ease the

translation process for the B language. Work needs to be done on designing the translator from the B

language to thevirtual machine. Like most Cm* support software, the translator will run on a PIDP-1O. At

6

present, expertise exists to hand translate programs onto both operating systems. This has enabled us to

make progress on the fourth milestone of the project.

Some experiments performed with the Load Generator have been discussed in this report. The primary

objective is to demonstrate the usability of the Load Generator. The first experiment discusses a real-time

application similar to the BMVD computation. Some measurements on monitored queue are presented.

The second experiment attempts to characterize the communication throughput of the Medusa operating

system for varying parameters of the experiment. The initial experience confirms the feasibility of the

Synthetic Load Generator.

7

1.3. Dormancy Study

Introduction

9 9A bard failure study of over 276 x 10 dorcancy9part hours (11 x 10 on inte-
grated circuits) and 118 X i09 power cycles (30 x 10 on integrated circuits) -as
conducted. * eased upon the data, a codel for dor-ancy a-nd the effect of pc--er
cycles was proposed. Even though the data is old (i.e., prior to 1972) and pcvar
cycling effects are difficult to quantify (i.e., how do you attribute a failure to
power-turn-on stress as opposed to nor--al poer-on stress), the conclusions that
can be drawn from the data provide interesting insights.

Ihe total System Life (SL) failure rate is =odeled by four contributing factor!

XSL- rS IS-+ rD X + NC %C + rE

vhere r5 , rD, and r_ represent the fraction of tire the system or ccmDonent is in
(power-off) storage, dormancy, and fully energized (pcwer-on), respectively. Dor-
mancy is defined as power levels less than 101 of fully energized. NC is the
number of power-on-off cycles per hour. C C, %- are the failure rates due
to storage, dormancy, cycling, and energized, respectively.

IL and X are functions of screening class, enviro--ent, and complexity. *A
is a ftnction of screening class, environent, coznlexity, and junction tezperat:'re.

i is a function of screening class, environnent, transient suppression, and teer-
afure effect (CT). CT, as depicted in Figure 1, is a function of initial tepera-
ture, power derating, thermal lag, stabilized temperature, and residual temjerature.

Su=Table I st-.rizes the range of values for \~~and as function of
screening class. Note that the rates are given in failures per hours. The
ratios of V. and V.J are also given. The following conclusions can be draw-a:

* According to the study, dor=ancy and storage failure rates are almost

identical.

One hour fully energized is equivalent to 10-50 hours of dor--ancy.

The data for I is less consistent than the other data. A rough estiate is
that one power-on-off cycle ranges from negligible to equivalent to 30 hours
of energized tire. The cost likely value is one cycle for 1-4 hours of L
energized ti=e.

J. Sauer, D. F. Cottrell, T. R. Cagnier, E. W. Xi=ball; "Dor---ancy and ?ower On-Off
Cycling Effects on Electronic Zquipzent and Part Reliability," RDc-T- 73-2"8, Kr-e
Air Develop=ent enter, Criffiss Air Force Base, :,ew York, August, 1973.

8 REAL TIME STATUS MONITOR FOR DISTRIBUTED SYSTEMS

t + tDH C
Scabilized ____ -

Temperature(T 5) 4

Power Off and,
Temperature (T)

NOTES:

Energy Profile for Power O-Off Cycle
• -- Temperature Profile for Power On-Off Cycle

aE W Energy Change (Power Off to Power On or Vice Versa)
AT - TS-T I Maximum Temperature Change

If t a tE , then full AT is not realized and this reduces

temperacure effect.

if tm2 tD then residual temperature effects increase

temperature effect.

Figure £,=-l General Diagram of Contributors to the Temperature
Effect Factor CT During Power On-Off Cycling

REAL TIME STATUS MONITOR FOR DISTRIBUTED SYSTEMS 9

Table I. Su-ary of Failure Rates and Failure Rate Ratios

tcyclic E Energized K C D KEl D K C/

Fa~eRte-ilu~eRt al~
Screening F~l~ ae Failu5e Rate F~ail Rate

class X 1.0 X. 10 X 10 V") V") "lX

Class A .17-1.33 .45 1.5-15 30-250 6-11 3-30

Class 3B 2-2.6 .03 40 .01 15-25 .001

Class C 3.08-5 15 80 3-5 15-25 5

MilStd 4.7 - 166 - 35 -

Non Mil Std 10-15 1000 500-700 60-100 50-70 1.5-2

To see the impact of power-on-off cycling on expected equipment life, let
rs r O, rl. Then

1SL N1'+ 1
ISL NC AC + X

or

ST. C
-N - +

XE C\X

Hence, the HT compared to no power cycling is:

Conclus ion

Table II illustrates the fraction of MTTF achievable as a function of N and
KC/E" Note that for one cycle per hour (such as the use of an LSI-11 in stugent

laboratories), MTTF is significantly decreased almost inde. endent of the value of
KC/E . For one cycle in 100 hours (such as a minicomputer turned on for a business

week)., W.rF is not significantly affected, regardless of the value of KC/E. MTTF

is a strong function of K C/E in the range of one power cycle per day and further
data would be required to determine whether power cycling is a problem.

OI I,

REAL TIME STATUS MONITOR FOR DISTRIBUTED SYSTEMS 10

Table II. Fraction of HTTF Realizable as a Function of Cycle Rate and KC/E

xc 2 5 30

1 .333 .167 .034

0.1 .8 34 .667 " .25

0.01 .98 .95 .77

L .. .-.,[.

2. An Integrated Instrumentation Environment for
Multiprocessors

Zary Segall, Ajay Sin gh, Richard Snodgrass,
Anita K. Jones, Daniel P. Siewiorek

A bst ract

This paper introduces the concept of an Integrated Instrumentation Environment (lIE) for
multiprocessors. The primary objective of such an environment is to assist the user in the process of
experimentation. The emphasis in an lIE is on experiment management (including stimulus generation,
monitoring, data collection and analysis), rather than on techniques for program development as in
conventional programming environments. We believe the functionality of the two environments should
eventually be provided in one comprehensive environment.

An experiment schema is introduced as an appropriate structuring concept for experiment management
purposes. Schema instances capture the results of an experiment for later analysis. An example is
developed in some detail to demonstrate the potential benefits of such an approach. The three primary
components of the lIE, namely, the Schema Manager, the Stimulus Generator, and the Monitor, are briefly
described. A preliminary implementation of the design on the Cm* multiprocessor is briefly discussed.

Key words and phrases: experimentation, experiment management, instrumentation, monitoring,
multiprocessor performance evaluation, programming environment, stimulus generation, workload
generation, automated testing.

2.1. Introduction
Multiprocessor designs have long been proposed to meet the need for powerful, cost-effective

computers. Several multiprocessors have been built to study the various trade-offs inherent in this
approach [30,73, 20, 58, 81, 65, 2,868, 21]. An important objective of experimentation in performance

evaluation and reliability is to provide evidence to validate the design decisions of these systems. Due to
the increased number of independent components in multiprocessors, the space of possible experiments

for such machines is orders of magnitude larger than for conventional uniprocessors. There is, therefore,
a need to approach the problem of experimentation on multiprocessors in a structured manner.

Instrumentation of the machine is the first important step. Typical instruments discussed in the

literature include software, hardware, hybrid, and computer network monitors, natural and synthetic
workload generators, data compaction tools, and data analysis packages [22, 40, 8, 43, 71, 19, 47, 54, 38].

Most systems possess multiple instruments which have been built independently over a period of time with

little effort toward integration. This unstructured approach has several disadvantages. First, an

experimenter has to communicate with each instrument through its unique user interface, requiring

familiarity with several sets of conflicting conventions in syntax and data formats. Second, data from one

12

tool has to be converted manually to the format requirements of any subsequent tools. Furthermore, to
make correlations across experiments, the experimenter has to manually keep track of experiment dates,
input parameters, monitored results, system configuration, and so forth. Finally, getting the tools to

interact during the course of the experiment is usually impossible.

Work in the direction of integrating instruments is found primarily in the area of computer network

monitors [47]. Nutt [48] observes that the techniques for gathering measurement data have not been

effectively used. Although the raw power of existing tools is quite adequate, the use of these tools is often

so complex that experiments cannot fully utilize their functionality.

This paper recognizes the need for better human -engineered environments for experimentation with
multiprocessors. It introduces the concept of an Integrated Instrumentation Environment (HIE) as a

structured approach to facilitate the process of experimentation. The design presented emphasizes the
integration of several instrumentation tools, including stimulus generation and monitoring, into a unified

experiment management environment. An experiment script (a schema) is introduced as an appropriate
structuring concept for experiment- management purposes. Schema instances are introduced to capture
the results of an experiment for later analysis. A preliminary implementation of the design on the Cm*
multiprocessor [30] under both the StarOS [34] and Medusa [511 operating systems is briefly discussed.

Although some program management concepts have been borrowed from conventional programming

environments (PEs) [24, 77, 46], the thrust in the lHE is substantially different from what is typically
discussed in conjunction with programming environments. The emphasis in an lHE is on experiment
management, from stimulus generation to monitoring data collection and analysis, rather than on

techniques for program development. We believe the functionality of the two should eventually be
provided in one comprehensive environment. The lHE draws on the functions provided by PEs such as
program specification and translation, version control, multiple programmer support, and module
management. This paper assumes the existence of a PE and will therefore not discuss such functionality

in the lIE.

Section 2.1.1 presents the functions to be performed by the lIE. The basic components of the design of

the lHE are presented in Section 2.2. Stimulus specification and representation is discussed in Section
2.2.1. Section 2.2.2 discusses the techniques used to collect and process monitoring information. The
run-time environment, presented in Sections 2.2.3 and 2.2.4, is a system-specific component permitting

remote monitoring and stimulus control. Section 2.2.5 discusses the schema manager as the central

control component supporting the execution of experiments. A preliminary implementation of the lHE on
Cm* is discussed in Section 2.3. Relevant portions of an example are discussed throughout the paper to

13

illustrate some of the concepts.

2.1.1. Functionality of the liE

An Integrated Instrumentation Environment (lIE) consists of a set of tools which cooperate closely and

present the user with a single uniform interface in order to assist and partially automate the process of

experimentation. The general objective of an experiment is to inquire about performance, reliability, or

any of a number of interesting properties of a computation. In the context of a computer system an

experiment is the execution of an instrumented program in a controlled environment allowing

measurement, collection, and analysis. An experiment may involve multiple executions of the

instrumented program with different input parameters or within different environments.

The liE supports the notion of an experiment schema as the high level unit of experimentation

management. Each schema specifies a related collection of runs, that is, executions of an instrumented

program. Intuitively, a schema can be seen as an parameterized experiment script, describing the

experimentation process. A schema specifies the instrumented program, the monitoring directives, the

specifications of the run-time environment, and the input parameters for each run.

The result of an execution of a schema is captured in a schema instance, containing measurements,

values of schema parameters and environmental information. This is a data structure representing the

unit of management for the experiment results. Schema instances are archived in a database for later

analysis,

By using the generic notions of schema and schema instance the experimentation process can be

expressed as in Figure 1.

Schema - DESIGN(Experiment)
WHILE (Not End of Experiment) DO
BEGIN

EXECUTE(Schema)
CREATE(Schema Instances)

END
ANALYZE(Schema Instances)

Figure 1: Experimentation Process in the liE

Each phase of the experimentation process will be discussed in detail in the following sections.

An lIE requires software to support the several phases of experimentation, including

14

* Translation of collections of user-defined modules and predefined synthetic actions into
instrumented parallel programs;

" Creation of the schema by merging the instrumented parallel stimulus, the monitoring
directives and the environment information;

" Schema interpretation and run-time control;
* Creation of schema instances; and
" Analysis of schema instances. -

In order to illustrate further the experimentation process described above, we will follow an example

through in some detail. This example shows how the lIE, at each stage, interacts with the user, performs

the required actions and generates its outputs. each stage. The example stimulus, called, simply, "a
multiprocessor experiment", or MPX, involves a single initiator and multiple servers communicating
through a shared buffer or mailbox. The initiator repeatedly sends requests through the buffer to one or

more servers, which operate on those requests concurrently. When the buffer is empty, the servers wait

for further requests; when the buffer is full, the initiator waits for a request to be removed by a server.

The servers perform identical functions, so a request can be satisfied by any server. Additionally, the

servers communicate with each other via shared memory. The goals of the proposed experiment are to
investigate

o the interaction between the request rate (expressed as the average number of requests per
unit time) and the number of servers, and

o the effect of the requet rate and the number of servers on the average buffer queue length and
the average waiting time in the buffer.

There are two interesting steady state behaviors that have different average queue length and service
rate. In the first case, the request rate exceeds the aggregate processing rate of the servers, and hence,

the buffer will always be full. In the other case, the buffer will always contain at most one request. The

aggregate service rate will be approximately constant, yet radically different, in both cases. This analysis
assumes a constant individual service rate by independent servers. However, in Cm*, accessing shared
data perturbs the performance of both the servers and the buffer insert/remove operations in nonobvious
ways, greatly complicating analytical modeling at the queue length and waiting time. As was shown

above, the boundary between the two cases is quite distinct if contention is ignored. The experiment will

investigate the boundary in tile presence of contention.

To summarize our approach, experiments are described as schemata, and the result of executing a
schema is a schema instance. The primary functions of the lIE are the creation of schemata, and schema
management execution and control of schemata, along with the creation, management and analysis of

r

I-

15

schema instances. The next section presents the design of an liE supporting these functions.

2.2. Design of the liE

The liE contains several components: a schema manager, a run-time environment, an instrumented

stimulus and operating system, a database, and a monitor (see Figure 2). The monitor consists of a

resident monitor, which gathers the data from the system under test, and a relational monitor, which

aggregates and correlates the data into a high-level form. The user interacts directly with the schema

manager, which communicates with the run-time environment and the monitor, which in turn interacts with

the instrumented program (the stimulus) and the database. The liE interacts with the PE through the

database.

User

Schema

Manager

/ -1
:.nstru__n.ed Stim,,uus

PE Data-Base Stimulus Control

,, __ Operating

System Resident

Monitor Monitor I

Run-Time System

Figure 2: liE Components
The arcs indicate transfer of data or control.

The schema man3ger is responsible for suppo-ing the schema and schema-instance abstractions. The

monitor initializes the schema instance with information specifying this environment, including details on

16

the hardware configuration, the version of the operating system, support software, and stimulus, and the

values of the parameters to remain constant for this execution of the schema. The schema manager then

cycles through the runs as indicated in the schema, initializing parameters that vary on a per-run basis,

starting the stimulus, and collecting the monitoring data. Finally, data concerning the runs as a whole is

collected or computed, and stored in the schema instance for later study. Note that not all the l1E

components should necessarily reside and execute in the same machine. In tact the Cm * lHE

implementation spans several computer systems. The run-time system and the stimulus are resident in

Cm*, whereas the schema manager, the database and the relational monitor are remotelly located in a

VAX 11 /780. The two computer systems are connected by an Ethernet link.

One motivation for partitioning the components of the lIE into a run-time environment and a remote

environment is that only the run-time environment is constrained to any particular hardware or software

configuration. Care has been taken to make the remote components as system independent as possible.

Currently two preliminary implementations exist for the run-time environment for two different operating

systems, while only one implementation of the remote components was necessary (see Section 2.3).

The stimulus controller component provides a well-defined interface to the instrumented stimulus. The

functions it supports include modifying parameters within the stimulus, both before and during the run,

generating initial control events for the stimulus, reporting errors back to the schema manager, and

controlling the clock. Similarly the resident monitor provides a uniform interface for the relational monitor.

The resident monitor is responsible for enabling and disabling sensors and for sending the information

back to the relational monitor in a format convenient for further processing. The sensors are embedded in

the stimulus, in the stimulus controller, in the operating system, and in the resident monitor itself. The

relational monitor controls the resident monitor and computes derived information which is then stored in

a schema instance in the database.

The database serves an important role in the l1E, because the information contained in the database is

the end result of the entire experimentation process. Additionally, the interaction between the l1E and the

PE occurs via the database by having one environment create objects in the database for the other

environment to use. For instance, schemata are initially created in the PE, to be interpreted by the schema

manager. Schema instances, created by the l1E, are managed using the version-control facilities of the

PE. By using a common database, it is possible to make use of the functionality provided by the PE. This

approach allows the designers of an lHE to concentrate on those operations unique to experiment

management

17

2.2.1. The Instrumented Stimulus: Representation and Specification

The stimulus is an arbitrary set of processes executing in parallel. The stimulus itself may incorporate

sensors; in addition, sensors reside in the operating system and in the resident monitor. We have

developed tools to aid in the rapid development of a stimulus. One of them is a workload generator. A

user specifies the behavior of his parallel program in a special high-level behavior-description language,

the B-'anguage. This behavior is specified as a directed data flow graph, similar to a complex bigraph

[10, 23]. The nodes of the graph represent subtasks, or processes, that execute in parallel with other

subtasks. Each subtask is composed of actions, parametrized program fragments that may be predefined

or user-defined, repeated at certain rates. Associated with each arc is a buffer which may hold data

variables or control tokens flowing from one subtask to another. Each subtask has an associated control

tuple (i, o), where i corresponds to the in-firing rule for the subtask and o corresponds to the out-firing

rule. This set of firing rules characterizes the precedence relationship between the subtasks of the graph.

A B-language program is compiled into an executable version as illustrated in Figure 3. This section gives

a brief overview of the B-language; a more detailed discussion can be found in [66].

SPECIFICATION OF instrumented
R E P R E S E N T A T IO N g pIN S T R U M E N T E DON

[(dataflow
. rWORKLOAD

Simulus
like .graph)

(B language)

B
program

ar

an

BASE Actions

Figure 3: Stimulus Generation Steps

The B-language thus represents the interaction of parallel processes via the graph model of

computation. A typical example is shown in Figure 4. Subtask Al is fired by the arrival of a token in buffer

B 1 which corresponds to the entry arc of the graph. Upon completion, subtask A 1 fires either of subtasks v

A2 or A3 by placing control tokens in either buffers B2 or 83 respectively. There is a certain probability

associated with the OR-output logic of subtask A 1 (designated by the '-+ '). Finally subtask A4 fires if it

receives a token either from A2 or A3. Upon completion, it places a token in buffer B6 which corresponds

to the exit arc of the graph and represents the end of a single execution of the parallel synthetic program.

18

B1

Al

82 40% 60 1>3

A2 A3

B4 + B5

A4r

Figure 4: A Parallel Synthetic Program- Graph Representation

The B-language subtask declarations for this example are-

SUBTASK Al { INLOGIC 831 ; OUTLOGIC : %40(B2) OR %60(B3))

SUBTASK A2 { INLOGIC :.B2 ; OUTLOGIC : 84 }

SUBTASK A3 (INLOGIC : B3 ; OUTLOGIC 85)

SUBTASK A4 { INLOGIC : B4 OR B5 ; OUTLOGIC : 86 1

Notice that the buffers B1 to B6 correspond to the arcs of the parallel synthetic program. The delimiter

'%" is used to specify the branching probabilities for the arcs of an OR-output.

The specification of parallel synthetic programs in the B-language is based on the object model

supported by both operating systems on Cm [34, 51]. The objects represented directly in the B-language

include-

e The task force object: The task force abstraction, a collection of processes that cooperate to
achieve a single logical task, is represented by a set of subtasks.

* The subtask object: This is the sequential'cotnputation unit that cooperates with similar user-

defined objects to compute the overall stipulated multiprocess task.

L.__ _

19

" The buffer object: The buffer object is a conventional queue of messages and is used by the
subtasks to communicate with each other.

* The semaphore object: Semaphores synchronize requests for shared resources.

" The file object: Files represent a sequence of bytes.

" The shared data object: Variables specified in the shared data object are globally shared by all
the subtasks of the task force. This allows communication of data and control through shared
memory.

" The table object: Tables implement functions varying with time.

Within a subtask, the basic building block is an action. To capture the cyclic nature of synthetic

workloads, an action ai itself is described by an action-repetition tuple (specified as <a,, ri>). This tuple

specifies that the action a. is repeated sequentially r, times, constituting action a.. An action may be

arbitrarily complex, and may be further composed of action-repetition tuples. Also, both the a, and the r

can be parametrized. Other control constructs within a subtask include composition and conditional and

probabilistic branching.

The library of actions consists of a collection of predefined and user-defined program fragments,

programmed in the systems programming language and stored as part of the system database. Examples

of predefined actions include sending or receiving messages via a buffer, inputing or outputing to a file,

referencing local memory, blocking on a semaphore, and accessing a shared resource. The user gains

flexibility by being able to include his own special program fragment among the actions in the library. An

example of a user-programmed action is the code for a disk process in a database application running on

a specific multiprocessor. Hence, the library of actions is specific for a particular multiprocessor system.

The B-language should be viewed as a portable framework into which system specific actions are inserted

from a i ,rary of actions.

Special control constructs are included in the B-language so that the schema manager may control the

user's workload at run-time as specified in the schema. The control commands initiated by the schema

manager are executed by the stimulus controller component of the run-time system. The VARY construct

in the language permits the stimulus controller to vary parameters on a per-run basis. The language also

allows one to specify that the parameters are to vary in real time. This is accomplished by binding a

real-time function to a run-time variable on a per-run basis. The real-time function is defined by a table

object and an associated interval of time. The stimulus controller forces the run-time variable to take on

successive values from the table during successive time interva,3.

'I

20

Using the MSGEVENT construct, the language permits the stimulus controller to initiate variable time.

driven events in the stimulus on a per-run basis. This construct requests the stimulus controller to deliver

messages to a buffer with inter-message time periods as specified by successive entries of a table. The

stimulus controller can associate a different table object, or a constant time-period, with the I4SGEVENT
variable on a per- run basis.

To allow measurement of the generated workload, a special SENSOR construct permits a user to embed

sensors into his program. Sensors allow specified information as well as a timestamp to be sent to the

monitor as event records. In addition to user-defined sensors, the B-language program has some built-in

sensors. For example, the start time and end time for each execution of a subtask are automatically

recorded in the event record. Furthermore, instrumentation available in the operating system and the lIE

run-time system allows the schema manager to access information not explicitly specified in the B-

language program. An example is information regarding the interaction of the stimulus and the operating

system.

The B-language translator constructs special data structures allowing the stimulus controller to

exercise external control over the experiment as specified in the B-language program. The translator also

generates sensor descriptions (see Section 2.2.4) for all programmed and predefined sensors in the

B-language program. These descriptions are used by the relational monitor to sort out event records

flowing from the resident monitor.

As an example consider the B-language program (Figure 5) for the single-requester, multiple-server

experiment discussed in Section 2.2. The task force consists of an array of five identical server subtasks

that wait on the RequestBuffer for queued service requests. The RequestBuffer is associated with

the message-event generator via the MSGEVENT construct. This allows an experimenter to vary the

request rate by changing the time (RequestPeriod) between successive firing of servers on a per-run

basis. The BEGIN and END constructs mark the service loop of each subtask which is executed each time

its in-firing rule is satisfied. In this example, each server does ten units' worth of work local to its

processor, and then does some variable number of accesses to global data, which is arbitrated by a

semaphore. A sensor, StartGlobal Phase, is embedded in each subtask and sends an event record to

demarcate the transition from local work to global work. Built-in sensors record the begin and end of each

subtask and the firing of request tokens by the message-event generator. The variable parameters of the

experiment are the number of active servers, the request rate, and the amount of global work done by

each server. This program will be specified in the schema as the stimulus for the MPX.

21

TASKFORCE MPXperiment
BUFFER

RequestBuffer(SIZE: 512)
SEMAPHORE

GDSemaphore(INITIAL: 1
SHARED

GlobalOata[512]
VARY

RequestPeriod;
MSGEVENT

RequestService RequestBuffer @ RequestPeriod
SENSOR

StartGlobal Phase

SUBTASK Servers[1..5]
f INLOGIC : RequestBuffer)

VARY
SharedDataAccess

BEGIN
<$DoLocalWork : 10>,
StartGlobalPhase,
<$AccessSharedData(GOSemaphore,GlobalOata): Shared~ataAccess>

END

Figure 5: 8-language program for the MPX

2.2.2. Relational Monitor
In the lIE, each time the experiment schema is interpreted, and the stimulus executed one or more

times, various monitoring information is collected and stored in the database in a schema instance.

The model of the monitoring data adopted in the lIE is a variant of the relational model used in

conventional relational databases [79]. Information is recorded as a collection of two-dimensional tables,

called relations. Each row, called a tuple, records a particular relationship between entities named in the

columns, called domains, of the tuple. For example, the relation Running (Process, Processor), with two

domains, may contain the tuple (MyProcess, ProcessorA) indicating that the process called MyProcess is

running on the processor called ProcessorA. Relations used in monitoring are temporal, in that each tuple I
records relationships that are true at an instance of time or over some interval of time. A relation involving

instances of time is called an event relation; each tuple records the occurrence of a particular event. A

period relation, on the other hand, records a relationship that exists for an interval of time. Periods are

delimited by events; each tuple (period) in the Running relation is associated whith two other event tuples,

one in the Start relation and one in the Stop relation. Time is included in an implicit domain manipulated

by the monitor.

The Running relation is an example of a primitive relation, because the information contained in the

J , l

22

relation is a direct translation of a set of recorded events. Primitive relations may be divided into three

categories: operating system, stimulus control, and user-defined. The first category is concerned with

information involving the operations and data structures supported by the operating system. The Running

relation is in this category. Tne second category involves the actions performed by the run-time portion of

the lIE. Examples of event relations from the MPX include

o RequestService(TokenID) : the sending of a MsgEvent token to the RequestBuffer; the
TokenlD identifies the token;

9 ServersStart(lndex, TokeniD) : the in-firing of a sensor's subtask; the Index identifies the
Server; the TokeniD identifies the token causing the firing;

* ServersEnd(Index, TokeniD) : the out-firing of a sensor's subtask.

The one user-defined primitive relation specified in the MPX, StartGlobaiPhase, is also an event relation

and contains only the implicit time domain. This relation was declared as a sensor in the B-language

program for the MPX (see Figure 5), and records the time at which the Server subtask finished its local

work and started the shared data access.

range of R is RequestService ; references to R will indicate the
RequestService relation

range of S is StartServers
range of Sp is StopServers
define WaitingInQueue (R.TokenIO) one domain, the request's

TokenID
where R.TokenID = S.TokenID ; the request is being serviced

by a server
start R ; the waiting begins when the request
stop S ; is made, and ends when the server

starts
range of W is WaitinglnQueue
define QLength (L = Count(W)) ; count the number of outstanding

requests in the buffer
range of Q is QLength
define AverageQLength (AvQL = Average(Q)) ; instantaneous average

define TotalWaiting (W.TokenlD)
where Sp.TokenID = W.TokenID
start W ; total waiting time begins when the
stop SP request was made, and ends when the

server stops
range of TW is TotalWaiting
define ServiceRate (SRate = I / Average(Ouration(TW)))

Figure 6: Queries for the MPX

Given a collection of primitive relations, new relations can be defined as a result of operations

performed on existing relations. These derived relations are specified using a relational query languages.

23

The query language used in the lIE is a version of Quel [72] augmented with additional temporal

constructs and is discussed elsewhere [69]. Figure 6 illustrates the definition of the derived relations

Ave rageQLength and Se rv iceRate used in the MPX. The former relation has one domain, AvQL, with

the tuples specifying this value for the various time intervals. Similarly, the Se rv IceRate relation will

have one domain, SRate, containing values varying over time. These queries will be referred to by the

schema for the MPX, and will specify both the primitive relations to be monitored and the calculations to

be performed on the data in the event records.

2.2.3. Stimulus Controller
The stimulus controller component of the run-time system is a set of utilities that permit control of the

stimulus as specified in the schema. While the schema manager provides experiment management

through the management of the schema abstraction, the sti julus controller provides low-level experiment

control through the management of a single run. The motivation was to separate the low-level control

functions from the experiment- management functions so that different management strategies could be

carried out using common control primitives. The functions exported by the stimulus controller are

therefore geared towards the initialization and execution of a single run.

One responsibility of stimulus controller is to ensure the repeatable behavior of a run by eliminating

side-effects from one run that might perturb the next run. An example of a side-effect is the presence of

tokens left over in the edges (buffers) as a result of the previous run. The stimulus controller ensures that

all data structures are in a well defined state at the beginning of a run. For example, buffers are emptied

and all semaphores are be initialized as specified in the B3-language program.

The stimulus controller is also responsible for the variation of parameters on a per-run basis and in real

time during a run. The variation of parameters on a per-run basis involves the VARY parameters of the

B-language program (see Section 2.2.1), and the variation of the graph-structure representation of the

program. A typical modification of the graph structure involves changing the number of active subtasks

for a particular run. This is particularly useful in real-time experimentation, where one wants to determine

the number of subtasks necessary to meet real-time constraints. The variation of parameters in real time

during a run involves the variation of the run-time variables of the B-language program according to some

function of time expressed as a table object and an associated interval of time.

The stimulus controller must provide a well defined mechanism to start the run. In the graphical

representation of the program this corresponds to firing the entry node, that is, placing a token on the

entry arc of the graph. To start a run, the stimulus controller delivers a specified number of control tokens

24

into a system-defined buffer, called the I gn it io nB u ff er, which corresponds to the entry arc of the

data-flow graph. The user may now use this source of tokens to start any desired subtask, by specifying

the I gnit IonBuf fer appropriately in the in-firing rule of that subtask. Similarly to detect the end of a run

the stimulus component watches a system-defined TerminationBuffer for a specified number of

tokens.

The stimulus controller has four major sub-components. The first sub-component executes basic
control functions, including initialize, to initialize the instrumented program before each run; tire, to fire a

specified number of tokens into the Igni tionBuf fer; vary, to permit the variation of VARY-parameters
on a per-run basis; display, to display the value of a vary-parameter; enable/disable, to enable or disable
subtasks on a per-run basis; and status, to return the status of the program. Observe that functions such

as display and status are interactive in nature and can be used during the interactive creation of a schema

(see Section 2.2.5).

Second, a message-event generator delivers token messages to pre-specified buffers according to
pre-specif ied functions of time. Control functions performed by this sub-component include start

generator, to start the message-event generator for a particular run; stop generator; and set message
event, to allow the association of either a table object or a constant with a buffer.

Third, a run-time variable driver ensures that all run-time variables vary in real time as specified by its
associated table object and time interval. The main control function of this module is to allow the
association of different table objects and time intervals with a run-time variable on a per-run basis.

Fourth, a clock module permits access to a set of clocks distributed over the system. This module is
used by the message-event generator, the sensors, and the run-time variable driver.

Additional functionality in the instrumented program may be added by augmenting the stimulus
controller. For example, a set of components used for experimentation related to reliability has been
designed and partially implemented. This includes software- implemented voters, and accelerated fault-
insertion and configuration -control modules.

2.2.4. The Resident Monitor

The monitoring information is collected* as event records, generated by sensors in the instrumented

stimulus, the run-time system, the operating system, or the hardware. Each event record contains ani

indication of the operation being monitored, the name of the component performing the operation, and the
name of the object the operation is being performed on. The event record may optionally contain a

25

timestamp and other information germane to the event. For instance, a sensor located- in a file-system

process might generate event records for file reads. In this case, the event record would include the name

of this process, the name of the file being read, an indication that this is a file-read event, the timestamp,

arnd perhaps the block number being read.

Highly selective filtering of the event records is necessary to constrain the flow of event records into the

monitor. Enabling and filtering directives are encapsulated in data structures called receptacles,

associated with either active components, such as a file-system process, or passive objects, such as a file.

Receptacles contain event-enable switches as well as a buffer for temporarily storing event records. The

resident monitor (and thus, indirectly, the relational monitor) has the ability to enable switches in each

receptacle. The flexibility in associating receptacles with either processes or objects provides a

mechanism for filtering the event records. For example, if the receptacle was associated with the file, and

the file-read event was enabled, event records for all file reads performed on the file would be written into

the receptacle. On the other hand, if the receptacle was associated with a file-system process, event

records for all file reads performed by the process on any file would be written into the receptacle.

A task force is instrumented by specifying the sensors, events, and object types in a file called a sensor

description. The operating system and stimulus controller, being task forces themselves, are also

associated with sensor descriptions. A sensor description is generated automatically when a B-leanguage

program is processed. Users may also write their own sensor descriptions if they so desire. Figure

7 illustrates the sensor description generated from the B-language program for the MPX given in Figure 5.

This description includes a sensor-process definition for each subtask and for the stimulus controller, and

events for the start and end of execution of each subtask and the start of each run. Another program

takes the sensor description and produces optimized code for each software- implemented sensor, based

on the specifications in the sensor description. Sensor descriptions thus allow users to specify their own

sensors which will utilize the same mechanisms for event record and generation as the sensors embedded

in the run-time and operating systems.

It is important to note that the user never needs to be concerned about receptacles or event records.

Instead, the lIE (through the monitor component) presents to the user the view of a database composed of

temporal relations. New relations can be derived using the query language (identified in Section 2.2). As a
result of executing a query, the appropriate operations (locating and enabling receptacles, processing

event records, and generating the schema instances) are performed automatically.

The use of receptacles and sensors may extend from sensors implemented in hardware to sensors

embedded in the operating system to sensors placed in the user's program. It is the resident monitor's

26

(Taskforce (name MPExperiment) ; Standard prelude

(SensorProcess (Name StimulusControl)

(Event (Name PerRun)
(Domains (Domain (Name RunNumber)

(Type Integer))
(Domain (Name RequestPeriod)

(Type Integer))
(Domain (Name ServerCount)

(Type Integei,)))
(Timestamp yes)

(Event (Name RequestService) ; MsgEvents
(Location StimulusControl)
(Domains (Domain (Name TokenlD)

(Type Integer)))
(Timestamp yes)

(SensorProcess (Name Servers) ; SubTasks

(Event (Name ServersStart)
(Location Servers)
(Domains (Domain (Name Index)

(Type Integer))
(Domain (Name TokenID)

(Type Integer)))
(Timestamp yes)

(Event (Name ServersEnd)

(Event (Name StartGlobalPhase) ; User-defined sensors

Figure 7: Sensor Description for the MPX

responsibility to extract the event records from the receptacle and send them to the relational monitor. By

the time the relational monitor receives the event records, they are in an identical format regardless of how

they were generated.

2.2.5. Schema Management
The central management and control of the schema and the schema instances is performed by the

schema manager. Functions of the schema manager fall into two broad categories: the creation,

manipulation, and execution of the schema and the creation, archiving, and cross-analysis of schema

instances. Thic ixh¢rna manager is organized in three main functional parts:

1. A user interface provides a uniform view of the various components of the lIE. Schemata can
be created using conventional text editors, or incrementally by directing the lIE to perform a
series of runs. In the latter case, the corresponding schema and schema instance are

t .,._

t .

27

automatically generated and archived. This incremental mode is particularly helpful in the
tuning of experiments. The user interface also directly supports monitoring queries and
database queries thereby allowing a user to manipulate and analyze schema instances.

2. A schema interpiater scans the schema and sends control directives to the run-time system,
including global initialization commands for the entire experiment along with commands to set
up, start, and terminate each run.

3. A schema-instance generator interacts with the relational monitor to ensure that an instance
is created and placed in the database. Both predefined and user-defined relations are created
and stored in the schema instance as a result of interpreting the schema.

The schema contains all the necessary information to perform a complete experiment. It consists of five

major components: the system configuration, the stimulus, monitoring directives, initial experiment

conditions, and experiment directives (see Figure 8). The system configuration completely defines the

environment the experiment is to be performed in. The stimulus is in the form of a translated B-language

program containing controlling parameters and data-collection sensors as described in Section 2.1. The

monitoring directives are in the form of a collection of queries as described in Section 2.2.2. The initial

experiment conditions consist of a set of invocation parameters and the required resources (i.e. hardware

and operating system configuration and instrumentation, stimulus version, etc.). Invocation parameters

can be used to initialize parameter values for experiments and are typically specified at schema

interpretatiorn time. The experiment directives are interpreted by the schema manager and specify how

the stimulus should be executed. Specifications are provided for the iteration of the stimulus over the

experiment runs along with the variation of parameters for each run.

SCHEMA (<invocation parameters>)
<system configuration>
<stimulus>
<monitoring directives>
<initial conditions>
<experiment directives>

END SCHEMA

Figure 8: High level organization of a schema

During schema execution, the relational monitor creates a schema instance to hold the results of the

experiment, The monitor collects all the resulting event records together with the schema identification

and environment information and creates an object to be managed by the PE. By using standard relational

database queries, the user can then perform analyses across schema instances. The data in the instance

which is collected automatically provides the user with enough information to replicate any particular

execution of the schema to verify the results.

ik r'It

28

SCHEMA MPX (RequestPeriod, SDA)

SYSTEMCONFIGURATION <configuration data>;

TASKFORCE <B-language program>:

MONITORQUERIES <relational queries>;

RESULTRELATIONS AverageOLength, ServiceRate:

VARY SharedDataAccess[I] = SDA WHERE I FROM 1 TO 5;

VARY NoOfServers FROM 1 TO 5
DO

BEGINEXPERIMENT
ENABLE Server[I] WHERE I FROM 1 TO NoOfServers;
TERMINATE AFTER 30 seconds
ENDEXPERIMENT

00

ENDSCHEMA

Figure 9: The Schema for the MPX.

In order to illustrate the use of schema and schema instance, consider the schema describing the MPX,

shown in Figure 9. The schema has two invocation parameters, RequestPeriod and SDA. The

configuration data specifies the resources requested by this experiment, including the versions of the

operating system and liE components, the hardware components, data files to be read by the stimulus,

and initial tests to be used later to calibrate the results.

The experiment directives are in the form of a loop which generates the execution of 5 runs. Each run

will have its own value for the NoOfServers parameter. The execution of this schema will terminate when

30 seconds have passed for each run. During execution, the sensors implanted in the B-language

program will generate data which is collected according to the monitor queries.

Each time this schema is interpreted, a schema instance will be automatically created in the database by

the lIE. Each instance will have the following components:

" The date, time, and user identification;
" The values of the invocation parameters;
" Exact version numbers of all software used in the experiment;
" A detailed description of the hardware configuration;
" Results of the initial tests as specified in the system configuration; and
" The system- and user-defined relations (in this case, the PerRun, AverageQLength, and

SierviceRate relations).

Once the instances have been created, additional analysis can be performed on the instances

29

•2.00.

C . 8 o i.0 - '- , -0 - - - 0 -- -- 0 - - - M O- . 0- ¢,IW - - -4- - -0 0
1.ouw s~

1.60 -

+- I Server
° 1.40o

*~~~ 1.2 ' Servers
.6 a 3 Se rers

. 2 . O--a- 4 Servers

1.00 O- - -0 5 Servers

0 0.80 \

cc4
00.60.i'

0.40.

o ;o44 . J ,S0.20 ~-o2t3 oe~c

CO,

0 10 20 30 40 50 60Time(Seconds)

Figure 10: Service Rate vs. Time for a Variable Number of Servers

individually or as a group. Figure 10 shows the relationship between average service rate and time for a

RequestPeriod of 200 milliseconds and a value of Shared0ataAccess of 400 accesses per request.

Initially the service rate is high, since the buffer is empty. For five servers, the buffer never contains many

requests, so the average service rate remains high. However, for less than three servers, the buffer fills up

quickly, causing the average service rate to plummet. The behavior with three or four servers is more

involved, and further analysis is necessary using different values for the request period and the SDA.

2.3. Implementation

I,

30 :
2.3.1. Background

Our research vehicle is the Cm* multiprocessor. Cm* is a 50 processor multiprocessor developed and

implemented at Carnegie-Mellon University. Two operating systems, MEDUSA and STAROS, have been

developed for Cm*. In addition, substantial utility software built for Cm' runs on other general-purpose

computers.

2.3.2. Status

An initial version of the lIE has been partially implemented for Cm*. Two versions of the run-time system

have been developed, one for each operating system [69, 66]. A substantial library of actions has

accumulated for both operating systems, and work is proceeding on implementing the B-language

translator. An initial version of the relational monitor has been developed, including the sensor-

description of the processor, although substantial effort is still needed before general queries and multiple

schema-instance analysis can be executed [69]. The schema manager is in the final design stages. It is

expected that a full implementation of the lHE will be completed by the end of 1982.

2.4. Conclusion
The lIE constitutes a systematic approach to the task of experimentation on multiprocessors. This

approach emphasizes the integration of the tools used for such experimentation and the development of

techniques for experiment management. The tools incorporated into the initial design of the lIE have been

oriented primarily toward performance measurement. Work is proceeding in the area of reliability

experimentation, specifically to enhance the monitor so that it can function across system failures and to

implement fault insertion into the stimulus in a controlled fashion. Another interesting use of the lHE is in

automated testing of revised modules in the framework of version control. Future research areas include

the integration of the lIE with a multiprocessor PE, the incorporation of hardware monitors and other tools

into the lIE, and the development of an lIE supporting experimentation of real-time systems.

2.5. Acknowledgements
The authors would like to acknowledge the contributions of some of the concepts and of the

implementation by the other members of the Multiprocessor Performance Evaluation Group: Xavier
Castillo, Robert Chansler, Ivor Durham, Peter Highnam, Ed Gehringer, and Pradeep Sindhu.

31

3. Synthetic Workload Generation for
Experimentation with Multiprocessors

Ajay Singh, Zary Segall

I'

33

4. Abstract
Multiprocessors are relatively complex computer structures and are still undergoing an experimentation

phase. An important aspect of this phase is experimental performance evaluation to understand and
validate new and existing systems. An integral part of such experimental performance evaluation is the
specification and generation of a controlled drive workload.

This paper presents the design of a controllable, interactive, synthetic workload generator for
multiprocessors. The primary objective of such a tool is to assist in the process of experimental
performance evaluation. This has been achieved in two ways. First, by designing a high level language for
the representation of a parallel synthetic program as a data-flow graph. As part of this language, control of
the workload is directly represented via special control constructs. Second, by supporting an
experimentation environment on the multiprocessor which allows the user to control, vary, and measure
his workload as specified in the language without having to recompile or re-debug his programs. A
message communication throughput experiment is described to demonstrate the use of the workload
generator.

Key words and phrases: workload, performance evaluation, environment, experimentation,
multiprocessors, parallel programs.

PMEDINO, PAGE IANE-MO flL.o

34

4.1. Introduction

Multiprocessors have been long proposed to meet the need for rebust, powerfull cost effective

computers. Being relatively complex structures, the space of design decisions is too large and

complicated to be predicted and validate only analyticaly. There is, therefore, a critial need for

experimental performance evaluation. An integral part of such experimental performance evaluation is the

specification and generation of a controlled drive workload.

Here, by workload we mean [1] the collection of all individual programs and data that are processed by

the computer system during a specified period of time. The term workload characteristic refers to

demands placed on the system resources. Ferrari [19] classifies three basic techniques for generating a

drive workload. First, natural workload generation, where the workload is generated by the real

application. Second, artificial workload generation, where the generated workload is independent of the

real application. And finally, hybr.., workload generation, where the workload is generated by the

manipulation of natural workloads. Many methods for generating workloads for uniprocessor systems are

described in the literature [40], [35], [63], [82], [19], [71], [41]. Not much work has been reported on the

problem of workload generation for multiprocessors [43]. This is primarily because of the lack of

operational hardware and/or support software.

Owing to the difficulties in controlling and parameterizing natural workloads, artificial worklcads are. a

preferred method for experimental performance evaluation. Examples of artificial workloads include,

instruction mixes, kernel programs, benchmarks, and synthetic workloads. We feel that synthetic

workloads have greater potential for experimental performance evaluation of multiprocessors. This is

primarily because synthetic workloads are much more flexible and controllable since they include

adjustable parameters to mimic a broad range of natural workloads. The problem of generating synthetic

workloads for multiprocessors has two aspects:

" The representativeness of the synthetic workload, that is, how closely does the generated
workload mimic the real workload.

" The generation of the synthetic workload, that is, what method should be adopted to specify

and produce this representative workload.

This paper addresses the second aspect of the problem of synthetic workload generation for

multiprocessors. It presents the design of Pegasus, a controllable, interactive, synthetic workload

generator implemented on Cm*, a fifty processor multiprocessor at Carnegie-Mellon University. A more

detailed discussion can be found in [67]. Our primary objective in designing and implementing a synthetic

workload generator was to speed-up the experimental performance evaluation of Cm° . This has been

achieved in two ways. First, by designing a high level language for the representation of a parallel

35

synthetic program as a data-flow graph. Second, by supporting an experimentation environment on the

multiprocessor which allows the user to control, vary, and measure his workload as specified in the

language without having to recompile or re-debug his programs.

Recognizing the representativeness problem, and its difficulty in multiprocessors, we have limited our

performance evaluation goals using parallel synthetic programs to the following:

" Parameterization of the multiprocessor system. Examples include quantifying speedup,
throughput, response time, and resource utilization, as a function of the prameters of the
system.

" Preliminary evaluation of an application on the virtual machine given its detailed
decomposition and workload characteristics.

* Comparison of two different virtual machines along various dimensions, by comparing their
behavior in the presence of similar workloads.

REPESETATON graph PARALLEL SYNTHETIC

(data-flow) WORKLOAD

(like graph) I (B-language)

B-language program

SET-UP CONTROL

feedback

A I__ON)

(Pegasus Environment)

Figure 11: The Components of Pegasus

Figure 11 shows the process of synthetic workload generation for experimental performance evaluation,

and its relation to the basic components of Pegasus. A special high level behavior description language,

I'

36

the B language, is designed to assist the user to specify his parallel synthetic workload as a directed data

flow like graph. Intuitively, synthetic programs are comprised of interesting actions repeated at certain

rates. Salient features represented in the B-Language include:

" Processes or subtasks are represented as nodes of a graph.

" The flow of control between processes is via messages.

* Buffers allow the buffering of messages, and represent the arcs of the graph.

" Subtasks consist of cyclic actions that correspond to the computation to be performed by the
corresponding nodes.

" Explicit control of the workload is directly represented via special constructs provided in the
language.

An action, or a set of interacting actions, are specified in the B-language from a Programmable library of

actions. The library is system specific, and is programmed in a systems programming language supported

on the machine. Furthermore, the user is given the option of programming his own action or a set of

interacting actions and adding them to the library. The B-language assumes the underlying operating

system support a message-based communication mechanism. Therefore, many of the language features

can be transported to other types of multiple processor architectures, including local area networks.

The B-language, along with the library, is translated to generate the user specified Parallel Synthetic

Workload on the machine. The generated workload is encased in the Pegasus Environment, an interactive

environment for controlled experimentation. This Experimentation Environment allows the user to run a

set of experiments on the machine with modifications to the workload from one experiment to another.

The Environment has two main components. A user interface allowing interactive set up experiments. A

run-time support environment permits control of the workload as specified in the B-language.

4.1.1. Background

Our research vehicle is the Cm* multiprocessor. Cm* is a 50 processor multiprocessor with over 4

million bytes of primary memory designed and implemented at Carnegie-Mellon University. Two operating

systems, Medusa and StarOS, have been developed for Cm*. In addition, substantial amounts of utility

software built for Cm* runs on other general purpose computers in the department.

Both Medusa and StarOS are general purpose operating systems whose archit- : res can .

characterized as "message based". They are distributed in that each operating system is formed by a

collection of parallel processes. Each process, or in some cases groups of processes, is responsible for

t !

37

one operating system function, such as file management. User processes communicate with the

operating system processes by sending messages. In contrast to a network where messages must be

used for all communication, the processes can directly share memory as well as communicate via

messages.

4.1.2. Overview of Paper
Section 2 discusses the graph model representation and its specification in the B-language. Section 3

discusses the concepts of an Experimentation Environment and the extensions to the B-language to

support its features. The design of the Experimentation Environment is discussed in Section 4 followed by

a discussion of the synthetic workload generation in Section 5. Appendix I discusses the Message

Communication Throughput (MCT) experiment to demonstrate the use of Pegasus as an effective tool to

parameterize the multiprocessor system. Measurements made with an experimental version on the

Medusa operating system are presented.

4.2. Parallel Synthetic Programs -- Representation and Specification

4.2.1. The Representation
The representation of parallel synthetic programs in the B-language is via the graph model of

computation. The graph model is one of the popular mathematical tools used to represent and analyze the

flow of control and data in parallel. programs [1211[26] [3] [23]. For systems exhibiting large-grained

parallelism, the model can be used to describe the interaction between parallel executing processes.

It is assumed that the reader is familiar with elementary graph theory. The terms: graph and net; node

and vertex; arc, branch, and link, will be considered synonymous. In general, nodes will be images of

operators, or computations, and the arc will represent either the flow of data, or control, or both.

A generic parallel program model is defined in [3] as a triple P = (Wf, U, C) where:

* W = {w1, w2 . w,), is a set of operators or computations;

* U ={u 10 ti2 9. , um), is a set of variables or data;

" C (to be elaborated), is the control

With each operator or computation is associated an input set li {uil. .. Uli and an output set 01

{U1....u OP)

38

Various graph models have adopted different control (C) strategies. The model adopted in the B-

language to represent parallel synthetic programs is similar to a later version of the UCLA graph model,

also referred to as the complex bigraph (6omplex bi-logic directed graph) [23] [10].

The UCLA graph model [17] defines its control C in terms of the vertices of the graph. With each vertex

w is associated one of the ordered p:,,rs (,), (, +), (+ ,)(+ + +) representing the input and output logic

respectively for that node. If the first me'nbg of the pair is *, w, is said to be AND-input logic (otherv.'ise it is

of OR-input logic). Similarly, w, is of AND-output logic (OR-output logic, also called branching vertex)

depending on the value of the second element of the pair.

The complex bi-graph extends the UCLA graph by allowing complex (many-to-many, that is multi-head

and multi-tail) arcs in the graph [23]. Fur-thermore, the bigraph also allows buffering of control items (also

referred to as !okens) and data iems on arcs. An additional feature of the bigraph is that each arc is

v.aeghted with a number, which represents the number of tokens needed on that arc so that the node can

fire. In-Fring L gic
El E2 2-E1 AND E2

2

w
-3

Fut. F'-ring igic

E3 E4 E3O3"4i

Figure 12: A Bigraph Node p
For eyample in Figure 12, node W is executed if there-are two tokens on arc E AND one token on arc E2 .

Notice this is a rnod:ie-d variation of the conventional JOIN. Upon completion of execution of the node

ether one to:.en is placed on arc E3 OR three tokens are placed on arc E4.

T~e S ,,n'uage r(pr,'sents a paralel sp-4hetic program as a directed d3ta fc', graph s ti;ir to the

(..,Iin !e:x-bigraph. The node here represenls a subtask, or pocess, that :Xecles in p~:r-tel v~h other

., t:: .s to inp!L;ntnt the user sp-cified pa.alll s nthetic program. More fcrrnally, the tr;ple reprosented

by the 3 lanjy,;,ge is (S, B, Rt). Obs.-rve a one to one corre.spcrd ence .,Ith the pa a'tel .oiel, P,

p:-c - nlc.d on Pace 37. For the B-a,.r ,Lgu . mod 1 ''.-e have:

S {s1, s, sn), is a set of n distinct subask, or processes, that represant the nodes of a

g-aph and coope ale to c .i.l- the user's ,l.ec i- task.

__
bleplodictiOl

Butlers

Ruleer

Figure 13: A LogcallyCmpttonNd

* B {b, b2 b) isthe et f qbuffrsChacanqeedt aibesadcnrltK
par

* R =ftr2 . ,r 2) igthe et of firnrle thtCharactrietepdneation Node

betv.e=n the nodes (subtasks) of the graph. With each node (subtask) there is associaited a
cor-tIrol tuple (rp.. rpo), where:

" r corresponds to the in-firing rule for subtask s.

o r 0 corresponds to the out-firing rule for subtask s.

Cb'ser.'e th e simil71arity of the above control tup!=e to the ordered pair discussed on Pace 38.

Th2)n '~Irg'- :!id cut ',iring ru.j:Es are sp--cified as a logical ro hpon tb;ifcs only. N C'Ie, t he

-mh: e c 'Ij;. - c zn be a v e d a~ q sp ec;ialI ca se o f a bu f fer, he r e a P c cIroce:ncs 'o ar .&:Wve,-

V !_wrr:s;nnds to a S;-id to the tuuffer. A g~n-_raliied Ccorrp)Uta'ion nc~je, a ~i~kis, th~ircfOre,

A multi hca!--., rnu'ltIitalcd control arc (coinp~ex arc) is also rt-pt,:sente-j by a tni uffer. Coins1"ar

fcr r;? gr:tph s!hc .'n in Fio'00re 14. 1--loice the cc:np!c-x -arc, F, is r oc-dby asir:!e buffeor B1.

Capy .~iloble to DT1C does not
p. Wi1jul legible zepioductiOn I

40

W1 W2

Figure 14: Complex Arc Representation

present in the in-firing and out-firing rule of the same subtask, as buffer B for subtasks W3 and in

Figure 14.

Bi

Al

B2 4% + 6% B

Figu re 15: A Parallel Synthetic Program

Thus the B-language fepresents the interaction of parallel processes via the graph model of

41

computation. A typical example shown in Figure 15 shows a graphical representation of interacting

processes in a parallel synthetic program. Subtask Al is fired by buffer B1 which corresponds to the entry

arc of the graph. Upon completion, subtask Al fires either of subtasks A2 or A3. There is a certain

probability associated with the OR-output logic of subtask Al. Finally subtask A4 fires if it receives a token

either from A2 or A3. Upon completion, it fires buffer B6 which corresponds to the exit arc of the graph

and represents the end of a single execution of the parallel synthetic program. The corresponding

subtask declarations in the B-language will be as:

SUBTASK Al (INLOGIC :B OUTLOGIC %40(82) OR %60(03))

SUBTASK A2 (INLOGIC :2 OUTLOGIC B4)

SUBTASK A3 { INLOGIC B3 ; OUTLOGIC B5)

SUBTASK A4 { INLOGIC B4 OR B5 ; OUTLOGIC 86 }

Notice the arcs B1 to B. correspond to distinct buffer names. The delimiter, %, is used to specify the

branching probabilities for the arcs of an OR-output logic.*

4.2.2. The Specification of a Parallel Synthetic Program

4.2.2.1. Object Specification

The specification of parallel synthetic programs is in the B-language and is based on the object model

supported by both operating systems on Cm*. The objects represented directly in the B-language include

" The task force object : The task force abstraction represents a collection of subtasks that
coopetate to achieve a single logical task. This corresponds to the Medusa task force [51] the
StarOS task force [34] or a team of processes in Thoth [11].

* The subtask object : This is the basic computation unit that executes in parallel on a
processor, and cooperates with similar user-defined objects to compute the overall stipulated
multiprocess task. The subtask, therefore, corresponds to the process in StarOS or an activity
in Medusa.

" The buffer object: The buffer object is a conventional queue of messages and is used by the
subtasks to communicate with each other. Generic operations defined on the buffer object
include:

o (conditional / unconditional) Receive a message from a buffer. An unconditional
receive on an empty buffer causes the receiving subtask to block. A conditional receive

on an empty buffer, on the other hand, does not cause the receiving subtask to block.

o (conditional / unconditional) Send a message to a buffer. A unconditional send on a full
buffer causes the sending subtask to block. A conditional send on a full buffer, however,
does not cause the sending subtask to block,

* The semaphore object : Semaphores synchronize requests for shared resources. Operations
on the semaphore include the conventional P and V.

* The file object :Files represent a sequence of bytes. Associated with each file is a file pointer
which points to the next byte of information to be read or written. Generic file operations
include open or close file, and read or write file.

* The shared data object :Variables specified in the shared data object are globally shared by
all the subtasks of the task force. This allows communication of data and control through
shared memory.

* The table object : Tables implement functions varying with time. The motivation, and exact
semantics of these objects are discussed in section 4.3.

As part of the object specification, particularly for architectures with non-uniform communication costs,

it is important to be able to specify the distance between objects. This is particularly important when one

wants to estimate the cost of data flow between objects. For example, two subtasks in the same cluster in

Cm*, will experience a lower communication (data flow) cost then two subtasks which are in different

clusters. The relative distance between objects is directly dependent on the absolute location of the

objects with respect to the machine. Both StarOS [32] and Medusa have higher level software which

permit the specification of inter-object distances (also referred to as proximity relations in StarOS [59], and

location specifiers in Medusa). The B-language directly reflects this feature of both operating systems.

Examples of some location specifiers for Cm* include: require same Cm, require same cluster, Cm Apart,

and cluster apart.

The object specification in the B-language is static. The object type is assumed to be supported directly

by the underlying operating system. A minimal set of objects necessary for a message-based system

exhibiting large-grained parallelism is identified and represented in the language. The motivation is to

maximize the portability of the language design over message-based, object-oriented systems. Special

objects, peculiar to a particular operating system, or created dynamically by the runtime system, can be

exploited in an indirect fashion via a system specific library of actions. This will be discussed in greater

detail in Section 4.3.

43

4.2.2.2. Programmable library of Actions
The library of actions consists of a collection of system specific, pre.debugged actions, stored as a file

in the system data base. The user can selectively include an action, or a set of actions from the library into

his B-language program. The actions in the library are programmed in a systems programming language

supported on the machine. Examples of pre-defined actions include : send or receive message to or from

buffer, input or output to a file, local memory references, block on a semaphore, access to a shared

resource.

The user gains flexibility by programming his own special action, or a set of interacting actions, and

adding them to the library. The library of actions, in some sense, performs the map from the parallel

synthetic program specification onto the underlying multiprocessor system. The B-language thus should

be viewed as a portable framework into which system specific actions are inserted from a system specific

library of actions.

4.2.2.3. Subtask Specification -- Control Constructs
The B-language control constructs within a subtask are a subset of constructs found in conventional

programming language. The motivation is to permit the programming of a sequential set of synthetic

actions for each subtask. An enhanced set of constructs could have been incorporated into the language

to give the flexibility of a programming language. This option is left open to the user, by allowing .him to

program new actions into the library in a the systems programming language.

To capture the cyclic nature of synthetic workloads, an action ak is described in terms of an action-

repetition tuple (specified as <a1, ri>). This implies that action a. is repeated sequentially r, number of times,

and that constitutes action ak . An action may be arbitrarily complex, and maybe further composed of

action-repetition tuples. Observe, both a. and the ri can be parameterized according to the requirements of

the synthetic program.

For a subtask the B-language picks a limited subset of the D-structures [14] [37]. The control constructs

are:

1. Basic Actions. Pre-debugged action, or.user-programmed actions, available in the library, are
the basic building blocks one may use to construct more complex actions.

2. Repetition. An action (either basic or complex) may be repeated a certain number of times,
and that, in itself, is another complex action.

3. Compositions. Actions may be composed to form more complex actions. ',' indicates
composition. Composed actions may be demarcated into a larger complex action by the
delimiters '{' and '1'. For example a complex action may be formed as:

44

acomplex = acomposed "composed
S

(
(ai : ri),
<a. . ,
<a, rI,>~
I I<a k V k

}: rcomPxsed

Notice, the composed action, acomposed is a composition of three actions, each of which is an
action-repetition tuple. Also, the composed action forms a part of another action-repetition
tuple, which represents acomplex.

4. Conditional. Of the form if p then a else a., where the predicate p is restricted to the
comparison of integers. The conditional constructs regulate the flow of control, and make the
detection of errors possible.

Besides these conventional control constructs, there is a demonstrable need for a non-deterministic

construct. This is because the nature of the data for specifying a synthetic workload is usually statistical in

nature with some probabilistic flow of control. A multi-way probabilistic branch statement (SELECT) has

been introduced. This allows the user to specify multi-way branches, with probabilities associated with

each of the branches. An example of the SELECT statement is as:

< SELECT f
600:<8 :r>;
250: :<a. : r.> ;REMAININ 1 : ak : rk >

}:1
>

This statement performs action <a: r>, 60% of the time, action <a r.>, 25% of the time, and action <ak :

rk>, the REMAINING 15% of the time.

4.3. The Experimentation Environment
The Experimentation Environment is a hospitable environment which allows the user to run a set of

experiments on the machine with modifications to the parallel synthetic program from one experiment to

another. This section discusses the functionality of the Experimentation Environment, and the extensions

to the B-language which allow a user to utilize this functionality. The basic cycle supported by the

environment therefore looks as:

WHILE true DO
BEGIN

SetUp(CurrentExperiment(Feedback(PastExperiment)))
Run(CurrentExperiment)
Make(Reasurements)

END

i'

45

4.3.1. Setting Up Experiments
In setting up experiments the Experimentation Environment has two major functions. First, it should

ensure the repeatability and integrity of experiments from one run to another. Second it should allow the

user to specify a set of parameters and vary them on a per experiment basis.

4.3.1.1. Repeatability of Experiments

To ensure the integrity and repeatability of experiments it is important that experiments be independent

of one another. In other words, it is the responsibility of the Environment to ensure that side-effects of one

experiment do not perturb the next experiment. For a graph simulation, an example of a side-effect is

tokens left over in the edges (buffers) as a result of the previous experiment. In this case, it is the

responsibility of the Environment to flush out all buffers after an experimental run.

4.3.1.2. Variation of Parameters
Major modifications in the structure of the parallel synthetic program, without having to re-translate,

would pose severe implementation problems. Certain interesting features of the graph structure are

suggested as interesting for variation on a per-experiment basis. Some of them have been implemented

and found useful in the first implementation of Pegasus.

The variation of the number of active subtasks in the experiment is particularly useful in real-time

experimentation, where one wants to determine the number of copies of different subtasks required to

meet real time constraints. The language allows for the specification of an array of a particular subtask. In

the graph model this corresponds to the specification of multiple executable copies of the same node.

The variation of parameters within a subtask allows the user to vary the load generated by the

corresponding subtask. An example of the action portion of a subtask is:

VARY par3

SUBTASK X (INLOGIC: ABuffer }
VARY part. par2
BEGIN

< Sactioni : par1 >.
< Saction2 : par2 >.
< Sactlon3 : par3 >

END
SUBTASK Y (INLOGIC: BOuffer)

VARY par4. par;
BEGIN

(Saction4 par4 >,
< Saction5 : parS >.
< Saction: par3 >

END

The VARY command in the B-language instructs the translator to treat the variables par1, par2, par3, par4,

I

46

and par5 as special control variables that can be accessed and varied on a per-experiment basis. The

language allows two kinds of vary-variables, global and local. The global vary-variables are shared across

all subtasks in the task force, and allow global control of the task force. On the other hand, the local

vary-variables have their scbpe restricted to the subtask and control the load of the subtask. In the above

example, vary-variable par3 is a global vary-variable, and therefore controls the variation of load for both

subtasks X and Y. The rest of the vary-variables are either local to subtask X or subtask Y. Notice the

vary-variables mainly serve as a function of controlling the experiment, rather than their more standard

use in conventional programming languages.

4.3.1.3. Table Objects and the Variation of Parameters in Real Time
An additional important feature of an Experimentation Environment is the variation of parameters as a

function of time while an experiment is in progress. This allows a user to impose a set of external time-

driven forcing functions onto his workload. The problem of variation of parameters in real-time is only

addressed for a subtask. A table object is introduced as a feature of the B-language to request the

variation of parameters in real-time. The table object provides a table of successive values that the

parameter may take with respect to time. Parameters that need to varied in real-time are declared as

runtime-variables in the subtask. The user can associate a delta-time, and a table object, with each

runtime-variable. This forces the runtime-variable to take on successive values from the table after regular

time intervals of delta-time. A greater amount of flexibility can be introduced by:

" postponing the binding between the runtime-variable and the table object to as late a stage as
possible. A suggested point to establish this binding is on a per-experiment basis.

" permitting the variation of the delta-time of the runtime-variable on a per-experiment basis.
This is, in effect, compressing or expanding the time-axis of the corresponding real time
function exported by the table object and the associated runtime-variable.

The same runtime-variable may be bound to different table objects on a per-experiment basis. Also two

variables may be bound to the same table object for a particular experiment. For example:

TABLE ATable f FILE: A.Tab).
BTable { FILE: B.Tab)

SUBTASK A {
RUNTIME Varl, Var2

The TABLE declaration declares two table objects, ATable and BTable. The FILE parameter specifies the

file containing the table values.

47

4.3.2. Starting and Running Experiments

After having set up his experiment, the user is now ready to start the experiment and run it on fbe

machine. In the graphical representation of the program this corresponds to firing the entry node, that is,

placing a token on the entry arc of the graph. To start an experiment, the Environment defines the eltry

arc of the parallel synthetic program as a system.defined buffer called the Slgnition~uffer. On the start of

the experiment the !lgnitionBulfer is the receiver of free tokens from the Environment. Upon request from

the Environment the user may inject an arbitrary number of lokens into the SlgnitionBuffer.The user may

now avail of this free source of tokens to start any desired subtask, by specifying the SlgnitionBuffer

appropriately in the In- Firing Rule of that subtask. For example:

SJETASK X { 1 vI).C STgnitionEuffer)

SUAEASK Y { INIOGIC S gniticr~uffer }

SUSASK Z { ,1LOGIC ($1gniticnBuffer) OR (ABuffer))

-. The Pegasus Environment

o2

IlgnitionBuffer .2*

~f

X Y

Fiquie 16: Th2-Sly ., o,,uf-r as .i C, .x Arc

The t. --e L.' sS, X, Y, and 7, have their in fi 'ng ru!-s sp.-. fied ns - fL'nclion of the 4 1,1.,nr uf,,r
(F .j. e 16 . T!,.(s sL),-c,:-c;ve r1.,1 'f" " ~ 3 I- , .

rUns t, eF.im nt (n1 -d by firing the ¢"'- i- -. "
I:, in f , ' . ,- I h S " ,.. 2 , i o' - , -, -o' r' ,,- a

" :!ar to the c.:..: 'I of 0*-- ,r the ,. t - .l a T :T , .' ."

-i.. . s to the e.it ,:,c of the fl , " c . n s ,, ed. of a .:J'3r

i 48

experimental run. It is the responsibility of the user to fire the $TerminationBuffer, thereby informing the

Environment about the end of an experiment.

4.3.2.1. External Event Generation
In message-based systems, a typical external event in a parallel program is the event associated with

the arrival of a message. Thus a reasonable requirement of the external event generator is to be able to

deliver token messages at pre-specified buffers, according to pre-specified functions of time. Table

objects are used to implement the functions of time. A typical B-language command declaring a message

event is:

MSGEVEMT AEvent - ABuffer 0 ATable

This command requests the message-event generator to deliver messages to ABuffer with inter-message

time-periods as specified by successive entries of ATable. The user is permitted to associate a different

table object with the msgevent-variable on a per experiment basis.

4.3.3. Timing Measurements

As part of the Experimentation Environment, the B-language permits the user to embed some basic

timing mechanisms into his load, thereby allowing him to make some monitor-independent measurements.

The TIME command declares a set of parameters which can be used to measure times taken for various

actions in the code for a subtask.

To make more detailed measurements, it is necessary for the Environment to interface with a monitor. In

the current design of Pegasus, the Environment interfaces with Simon [69], a distributed relational monitor

written for object-oriented systems. The parallel synthetic program in Pegasus, for most purposes,

behaves like any other program running on the system and monitored by Simon. However, the higher level

of abstraction presented by B-language, permits special higher level interaction with the monitor thereby

permitting a greater deal of flexibility.

4.4. Design of the Experimentation Environment
This section briefly develops a design for the Experimentation Environment and its relationship to the

parallel synthetic workload. The focus is on the modular decomposition of the design and the inter-

module relationships (interfaces).

49

4.4.1. Modular Decomposition
Broadly speaking, the executable program !4enerated by the translator can be decomposed into two

logical parts:

1. The executable Load Program module.

2. The supporting Environment module.

The executable Load Program module corresponds to the user specified parallel synthetic workload. The

possible functionality that c;'n be exported by the executable Load Program includes:

1. Performing timing measurements, as specified by the TIME commr-nd in the user specification
(Section 4.3.3). This permits the user to measure the time taken for the specified action-
repetition tuple.

2. Implementing the user specified parallel synthetic workload, that is, the interactions between
subtasks as specified by the graph model, and the synthetic program executed by each
subtask.

3. Implementing the enabling and disabling of the subtask for a particular experimental run.

The Environment module exports most of the functi onality of the Experimentation Environment. The

objective in the design is to minimize any perturbation that it may introduce into the experiment. This

module can be further decomposed into the following sub-modules (Figure 17):

1. The User Interface is a conventional command interpreter that provides a graceful interface
with the user on a per experiment basis. Depending on the user command, the User Interface
communicates and controls the Environment submodules and the Load Program module. The
user can now set-up, control, and run experiments interactively on the machine. The User
Interface module has access to symbol table information for the parameters that need to be
varied on a per experiment basis. Appendix 11 lists some of the commands of the User
Interface.

2. The Message Event Generator permits the generation of external stimulus for the executing
Load Program. The Message Event Generator is designed as a separate process which
vvdelivers token messages at pre-specified buffers according at pre-specified functions of
time. As a special case the time interval between successive deliveries of the token may be a
constant.

3. The Driver for RUNTIME Variables : The primary function of the RUNTIME Variable Driver
module is to force all RUNTIME variables to vary as a function of time as specified by its
associated table object and delta time. The RUNTIME variable takes on successive values
from the table after regular time intervals of delta-time.

4. The Clock Module permits access and manipulation of a clock.

5. The Random Number Generator supports the execution of the probabilistic SELECT

50 User
Interface

F M 1d ule

staemenEvent inthME langu
Generator McnmeC

Load

Monitor e Library Of stss

Interface A Actions

~Random
t . Th Er or No. Gen

Handier

Error

Log -

oigure 17: Detailed Decomposition

statement in the language.

6. The Monitor Interface allows additional monitoring of the Load Program.

7. The Error Handler and Log permits the fogging of errors that the operating system reports.

4.5. Design of the Generation Mechanism on Cm* ,

One of the objectives of the design of the 8 language was to present a conceptually unified machine to

a novice user. As a result the language was designed to express both the interaction of parallel subtasks,

and the synthetic program executed by each subtask. The user now has to specify only one file

corresponding to his load program. Figure 18 shows how a typical B-language program gets translated in

the implementation on Cm*. A typical B-language program consists of two parts : the object and global

declarations, and the subtask declaration. The translator takes this program as input and generates a set

of Bliss-1l/StarOS or Bliss.11/Medusa files, a definitions file (.DFS), and a linker command file. Each

subtask generates a corresponding Bliss- 11 module. Symbol table information for parameters local to the

y.IOD

5

Linker

ILNK
/\

.OJ .. OBJ .OBJ .OBJ *- .OBJ

Some
ylm

Environment Bliss-11 Compiler Piogarning

Fles Language

Library .DFS .B11 ~-* .811

TAB .JAB Ph subtask su ask .

Table Object Files
The Pegasus Program File

Figure 18: The FIow of Files

sublask are dcmnarcac-d as CSECTS [7] in the corresponding Bliss-11 module. BS side a Bliss1 mcule

per subhsk, he Pt- sL:S Lor a'so generates a global definitions file (DFS), v.hich along v.,ilh the

library We is conipiled . th e-ich S;iz.s-11 module. Furlhermore, to extract the s mnbol t'.b',e iform-'" or

global parameters, such as global VARY.\ariables and IvISGEVENT variables, anolher 3liss-11 module is

created as a separate fe v;:h the 2.pp:pnle infom~ation encCded in CSECTS.

The gost vital par of the tians!-.tion process is the generalion of the linker cc'm;"!n file for the pi.-lel

synthetic program. This file dscr;bes thie structure of the parallel synthetic program, iis objects, and their

acceibi~ty to the srl. ub,.: .- s. The .: o1 table information is c)-trtcted as CSFCTS and wi-ed in

Ly - ,,ton, ,.. i: i :x: 2 ,: ,., . c., e oc.'ss s. Thi it i: f'C- i g

C oailuble to DTIC does 1ot

cp &ly tetdUU

752

on the machine.

4.6. Conclusion

The process of experimental performance evaluation has been simplified by providing a tool for the

representation, specification, and execution, of parallel synthetic programs in a controlled environment.

Special care has been taken in the design to ensure portability over message-based, object-oriented

systems. The minimal set of objects necessary for a message-based system exhibiting large-grained

parallelism have been identified and represented in the language. Within a subtask the control constructs

have been kept simple. The current design has, for the most part, been implemented on the Medusa

operating system. Another version of the design is being implemented on the StarOS operating system.

The initial use of Pegasus has been mainly as an experimentation tool for parameterizing and comparing

the features of Medusa and StarOS. The issue of generating workloads representative of actual

multiprocessor applications has not yet been examined. This is primarily because of the difficulty

encountered in deriving the workload characteristics for such applications.

Future extensions to Pegasus include the design of a fault inserter, and the specification of redundant

software structures for reliability studies.

4.7. Acknowledgements
The authors would like to acknowledge the contributions of some of the concepts and the

implementation by the other members of the Multiprocessor Performance Evaluation Group: Xavier

Castillo, Robert Chansler, Ivor Durham, Peter Highnam, Anita Jones, Daniel Siewiorek, and Pradeep

Sindhu.

53

Appendix I
Experimentation

The primary objective of this section is to demonstrate the usability of Pegasus. The Message

Communication Throughput (MCT) experiment tries to characterize the message communication

bandwidth for a message based system as a function of some specified parameters. For the Medusa

operating system the task force scenario is a Sender subtask and a Receiver subtask communicating via a

buffer. In this case, the buffer corresponds to the pipe object of Medusa, through which messages can be

sent by value. The parameters of the experiment are:

* Size of a message, B bytes.

* Usage of the received message, f(B). Where, f(B) can be either Log(B), or O(B), or 0(B2), or
O(exp(B))'.

o The physical distance between the Sender and the Receiver. The current experiment has
been run for the inter-cluster case.

For this simple experiment, it is assumed that the Sender and the Receiver subtasks are the only subtasks

scheduled on their processors. Also, it is required that the Sender and the Receiver subtasks be coded

such that the Sender be able to send an infinite number of messages to the Receiver. Furthermore, it is a

assumed that the Send and Receive operations are unconditional, that is, the Sender blocks if it sends to a

full buffer, and the Receiver blocks if it receives from an empty buffer.

The user specification of the experiment as a parallel synthetic program is as:

TASKFORCE MCTExpt

BUFFER CBuffer C SIZE: 1024 }

VARY NoOflterations. SlzeOfmessage

SUBTASK Sender (INLOGIC: SIgnltlonBuffer
LOCATION: Cmnl-1. Require same cluster)

LOCAL PBlock[3]. SrcObject[1024]

BEGIN

< SSetSendPBlock(PBlock. SlzeflMessage. SrcObject. CBuffer) : 1 >.
{
< SsetUp(SrcObject) : SlzeOfMessage >,

< SSend(PBlock) : 1 ,
} : NoOfIterations

END

IThis is the Order notation

54

SUOTASK Receiver { INLOGIC: SgnitionBuffer
LOCATION: CmZ-l. Require same cluster)

LOCAL PBlock[3]. DestObject[1024]. CopyObject(1024]

VARY UsageOfMessage

BEGIN

(SSetRecvPBlock(PBlock, SlzeOfMessage. DestObject. CBuffer) 1 >,
(
< $Recelve(PBlock) : 1 >.

< SCopyMessage(DestObject. CopyObJect) UsageOfMessage >
) NoOflteratlons

END

The Message Communication Throughput is defined as:

2-SizeOfMessage 0 NoOfIterationsMCT = -------------- - ----------------- bytes/sec
T(StartSender) - T(FinishReceiver)

The Experimentation Environment automatically computes the values of the start and the end times of

each subtask of the parallel program" Thus the values of T(StartSender) and T(FinishReceiver) can be

queried via the User Interface. Observe, for every send-receive transaction, the act of setting up the

source object ($SetUp(SrcObject, SizeOfMessage)) by the Sender subtask defines the number of words

(SizeOfMessage) that it desires to communicate with the Receiver Subtask.

1.1. MCT -- Measurements

The MCT experiment was run for combinations of the parameters: size of message, and usage of

message. Figure 19 shows a plot of MCT versus message size for varying usage patterns. The results

show some of the tradeoffs involved of sending large and small messages on the Medusa virtual machine.

The curves indicate that the overall time to send N messages of size M each is of the form:

[KlN + K2]=M microseconds

Here K2 reflects some constant overhead required to set up the message channel, and K1 is the average

cost of sending one word. The MCT is therefore proportional to:

(M*N)/([K1*N + K2]-M) = 1/(KI + K2/N) bytes/sec.

The above expression approaches 1 /K1 for large N, and approaches 0 for small N. In this case we have:

1/K1 = (appx) 45 K-Bytes/Sec
or K1 = 18.2 microseconds / byte

Figure 19 therefore characterizes the message throughput of the Medusa message mechanism. The

use of the Pegsus as a tool to perform this experiment saved a substantial amount of time. In particular,

,4

* 40.

Usge B

0.

0.

Usage B

10

0 100 200 300 400 500
B (wordS)

Figure'19: MCT versus Message Size for Varying Usage Patterns

with the AUTOMATIC command of the User Interface (see appendix for details) these results were
acquired in a short amount of time.

57

Appendix II
1V Q User Interface Commands

1.1. VARY /QUERY / HOWLONG Command

The VARY command allows the user to modify the VARY parameters on a per experiment basis. The

QUERY command allows the user to query the value of a VARY parameter of a specific subtask. The

HOWLONG command returns the value of a TIME parameter for the specified subtask. A typical user

interaction for the VARY command is as (defaults are given in square brackets):

-PEGASUS- vary
Name Of Subtask -*> ASubtask

Name Of Parameter [All] -> I

**e The Following are the VARY parameters *o
AParam
Bparam.

Name Of Parameter [All] --> AParam

Value -- (BASE 10) --> 20.
-PEGASUS-

11.2. AUTOMATIC Command

The AUTOMATIC command puts the user into Automatic Experimentation mode, where the User

Interface commands, and values of parameters, are read in from a command file, and a series of

experiments performed. By giving appropriate instructions to the monitor, the user can also automate the

data collection for his set of experiments. The objectives of this command are two fold:

1. To speed up any routine experimental work assuming that the user has already decided the
parameters of his experiment.

2. To speed up the exploration of entire regions in the experimental space of the user.

A typical user interaction is as follows:

-PEGASUS- autoutltc
Name of Command File --) lusrlaslacmd

-PEGASUS-

(input is read from Command File and echoed on terminal

I ,inowim PAG 5a, a-aew niam

58

11.3. FIRE Command
The FIRE command fires enables all enabled subtasks, and then fires a specified number of tokens into

the $ignitionBuffer. A typical user interaction is as follows (defaults are given in square brackets):

-PEGASUS- Lire

How many Ignition Tokens ?? [1] an) <CR>

Start the Event Generator ?? [N] --> <CR>

-PEGASUS-

If the user desires to start the Message Event Generator, the FIRE command communicates appropriately

with the Message Event Generator module. The pseudo code for the command is as follows:

BEGIN
FOR AllUserSubtasks DO

BEGIN

IF (Subtask Enabled) THEN
Enable(Subtask)

END ;
Number - AskUser("How many Ignition Tokens 5)

IF (AskUser("Start Event Generator") - True) THEN
Signal(StartEventGenerator)

ClockReset
INCR I FROM 1 TO Number DO

Ftre(SIgnitionBuffer)

IF (AutomaticMode - True) THEN ! in AUTOMATIC mode
Block(on $TeminationBuffer) ; waits for the end of

END ; ! the experiment.

11.4. MSGEVENT / GENSTOP Command
The MSGEVENT command permits the user to vary the time interval between successive messages to

the buffers associated with a MSGEVENT variable. The variation of the time interval can be either by

associating a constant with the MSGEVENT variable or by associating a table object with it. In the latter

case the Message Event Generator fires off the specified buffer at time intervals that are successive values

of the table. A typical user interaction for a constant inter-message time interval is as:

-PEGASUS- msoevent
Name Of Message-Event --> AEvent
Name Of Table Object so> constant

Value -- (BASE 10) as> j0.

-PEGASUS-

The GENSTOP command permits the user to stop the message event generator and thus control the

duration of his external stimulus in the experiment.

59

11.5. STATUS / TOTIME Command
The STATUS command gives the status of the various subtasks in the user task force. Status

information includes information such as whether the subtask is running, what is its location with respect

to the hardware, and other operating system specific information. The TOTIME command gives the user

access to the start time, the end time, and the total time taken by the latest execution of all subtasks. A

typical user interaction is as follows:

-PEGASUS- tot me
(TIME -- Minutes : Seconds

Subtask ID Subtask Start Time End Time Total Time

I ASubtask 00 00.002 00 12.346 00 12.344

2 BSubtask 00 02.879 00 13.999 00 11.120

- PEGASUS-

The STATUS, TOTIME, and GENSTOP commands can be used while an experiment is in progress. This is

unlike the rest of the commands which are recommended for use on a per-experiment basis.

11.6. ENABLE / DISABLE / TFINIT Command
The ENABLE / DISABLE commands permit the user to enable or disable a particular subtask. Disabling

a subtask essentially makes the subtask unavailable for the current experimental run. This allows

experimentation with a different number of servers for a node in a given execution of a graph. A typical

user interaction is as follows:

-PEGASUS- disable

Name Of Subtask a-> Cjubtasj

Name Of Subtask --> BSubtask

Name Of Subtask a-> tG

-PEGASUS-

The TFINIT command initializes the task force for the next experimental run.

11.7. RUNTIME Command
The RUNTIME command allows the user to associate a given table object and a delta-time with the

specified RUNTIME variable (Section 4.3.1.3). A typical user interaction is as:

-PEGASUS- runtimE
Name of Subtask me> ASubtask

Name of RUNTIME variable --> Ar
Value of Delta-Time (milliseconds) [175)

Name of Associated Table Object [BTable] --> ATabl*

- PEGASUS-

L. -I

61

Appendix III
The B-language Grammar

This appendix describes the B-language grammar in reasonable detail. The objective is to give the user

a formal introduction to the language. The description, however, is not exhaustive.

<taskforce>

:: TASKFORCE <taskforce name>;<object- declaration>

<object- declaration>

::= <passive- objects>;<globa' declarations>;<active" objects>.

<passive- objects>

:: <buffer- object>

::= <file- object>

= <semaphore* object>
:: <table- object>

:: <shared- object>
<buffer- object>

::= BUFFER (buffer- declaration>;

<buffer- declaration>

::< buffer- attrlbutes>.<buffer- declaration>

:: <buffer- attributes>

<buffer- attributes>

:: <buffer- name> (SIZE: <integer>}

<buffer- name>
::u <name>

::(name>Jl .. <integer>]

<file+. object>

:: FILE <file declaration>;
<file- declaration>

:: <file- attributes>.<flle- declaration>

:: <file' attributes)

<file*- attributes>

::= <file- name>{ <file- OSname> }

<semaphore object>

:: SEMAPHORE <semaphore- declaration>;

<semaphore*- declaration>

:: <semaphore- attributes>,<semaphore- declaration>

::< (semaphore- attributes>

<semaphore- attributes>

::< (semaphore- name> (INITIAL: <integer> }
<table*- object>

::- TABLE <table- declaration>;

<table]- declaration>

::= <table attributes>.<table- declaration>

:: <table*- attributes>

<table- attributes)

::- <table- name> (FILE: <file*- host- name>)

<shared- object>

:: SHARED <shared* declaration>;

<shared- declaration>

::m (shared- attributes>,<shared- declaration>

::m <shared attributes>

<shared* attributes)

YOWAMAIb PM ALM-l 11USD

''a hared#' variables> (LOCATION: <location' SPecifier) }

(shared' variables>

::<variable),<shared-' variables)

:=(variable>

<global- declarations)
::(bind'- declaration)
: <msgevent' declaration)

<: vary' declaration)

(bind.- declaration>
::- BIND (bind'- relation>;

(bind' relation>
::- <binding).<bifld* relation>

<binding>
<: variable> -(conatant>

(asgevent'- declaration>

:'MSGEVEWT <msgevent* relation>;

(msgevent'- relation>
::a (event'- binding>.<Esgevent', relation>

::* (event- binding>

(event,- binding>
::- <buffer' name> a (time'- period>

<time' period>
<table- name>
<: constant>

<vary,- declaration>
:'VARY <vary*- variables>;

(vary,- variables>
: <variable>.<vary' variable>

< ~ variable>

(active'- objects>
=<subtask'- object><active- object>

= subtask'- object>
(subtask' object>

::-~ SUBTASK (subtask'- name>(<subtask' TFlevel> I<subtask'- block>

(subtask4' name>

.=(nme>[l. <integer>]

(subtask' TFlevel>
*.INLOGIC : <inlogic,' *xperssion)

*.OUTLOGIC: (outlogic'- expressionl>

* LOCATION: (proximity'- relation>

(subtask'- block>k

::a <subtasko' declaration><subtask'- body>

(subtask' declaration>
<. vary'- declaration>

* 3 runtime' declaration>

.= time' declaration>
0local' declaration>

<runtimw' declaration>

::- RUNTIME (runtime'- variables>

(runtime+ variables)

::a (variable>.(runtim@*' variables>

63

<variable>
(time- declaration)

: TIME (time.- variables>
<time. variables>

<t.- variable).tm+ vrals
.< t- variable>.tm~vrals

<t.- variable>
:: <variable>

<local, declaration>
:: LOCAL <local' variables>

<local, variables>
<variable>.<loCal- variable)
< variable)

<subtask- body>
:: <initial.- action><service- loop>

<initial, action>
:: <action>

<service, loop>
:: BEGIN <action> END

<action>
* <deli..- begin><action> :(repetltion<dllil- end>

=IF <boolean- expression> THEN <action> ELSE <action>

* <compound.- action>
* <library,- action)

<compound- action>
:-(<compose' action>)

<compose.- action>
* <action>.<compose* action>

*(action>
<repetition>

*<constant>
*<variable>

< doeIim,, begin>

*LOOP(<t-variable>)

<del im'- end)

0'~>

65

5. The Cm* Test Bed
Edward F. Gehringer, Anita K. Jones, Zary Z. Segall

5.1. Introduction

Interest in multiprocessor architecture has grown steadily over the past ten to fifteen years. VLSI

technology offers the potential for building multiprocessors which are substantially larger than present

computers to solve problems that cannot be solved today. A substantial number of multiprocessor

designs exist, yet only a few multiprocessors have been built with a high degree of parallelism, say thirty or

more processors.

Although multiprocessors appear to have cost/performance and reliability benefits, the computing

community has relatively little experience in the actual use of multiprocessors. Consequently, little is

known about how well the potential of multiprocessors can be realized in practice. This is exactly the

thrust of the Cm* research project. This paper presents our experience in two important aspects of

multiprocessing: first, the structure and organization of a multiprocessor test bed, and second, a

collection of experimental results acquired from it.

A distributed system can be seen as being composed of an architectural component and a behavioral

component. The first component consists of hardware, firmware, and software elements, and the

relationships between them. The behavioral component is characterized by the way the architecture acts

in the presence of a workload. The architectural component should be flexible, and the behavioral

component should provide a controllable and measurable behavior.

These two goals h-ve been emphasized in the Cm* test bed. Hardware-architecture flexibility has been

realized by a programmable interconnection network. The two operating systems STAROS and MEDuSA

provide adaptable mechanisms and policies for running experiments with application programs. The

workload, the measurement tools, and the experimentation control are integrated into an experimentation

environment. This environment complements the other support programs such as compilers and loaders

with facilities for the specification, monitoring, and analysis of experiments.

The Cm* project has successfully constructed a 50-processor multiprocessor and two operating

iystems, thus demonstrating the feasibility of several aspects of multiprocessing. This paper explores

some of those aspects, beginning with the Cm* hardware. Next, it focuses on the software-operating

systems, utilities, and the higher-level software used to control experiments and gather data from them.

Section 5.3 uses these experimental results to investigate how well various algorithm structures exploit the

a,l

or

66

Kmapl mp

Kmap5 Kmap,4

000 000

-...___. Map Bus

Inter-Cluster Bus

Figure 20: Five-Cluster Cm Configuration

potential parallelism of Cm*. Finally, the results of extended measurements on the hardware itself are

presented.

5.2. The Cm* Experimentation Environment

5.2.1. The Cm Hardware
The Cm* hardware consists of a number (currently 50) processor-memory pairs, called Cm's,

connected by a hierarchical, distributed switching structure. Cm* is partitioned into seve -I (currently 5)

clusters of up to 14 Cm's each; the Cm's in an individual cluster are connected via a map bus to a mapping

processor, called a Kmap, through which they communicate with each other (Figure 20). The clusters

themselves are connected via intercluster busses. For a Cm to communicate with a Cm in a remote

cluster, it first sends a request to the Kmap in its cluster, which forwards it to the Kmap in the remote

cluster, which in turn passes the request to the target Cm.

Consequently, any Cm can reference memory anywhere in the system; the memory appears to be aLLIL

67

single large memory. Nevertheless, the communication paths are of different length and induce a

performance hierarchy: references by a Cm to its local memory take about 3 /sec.; references to another

Cm in the same cluster require 8.6 /sec.; and intercluster references take about 35.3/usec. [31].

Each Cm is a Digital Equipment LSI-11 with 64K or 128K bytes of memory, modified by the addition of a

local switch, or S/ocal, which examines each memory reference generated by the processor. Using its

internal mapping tables, the Slocal decides whether the reference is to the processor's local memory (in

which case the reference takes no longer than a memory reference by an unmodified LSI-11), and if not,

passes the reference on to the Kmap. The Kmap is a high-speed microprogrammable communication

controller with a cycle time of 157 nanoseconds, a control store of 4K 80-bit words and a data RAM of 4K

80-bit words. Since the Kmap is programmable, it is possible to experiment with different processor-

memory and interprocessor communication strategies. Further, the border between software and

firmware is fluid, and can be moved to investigate different operating-system implementations. For

example, important operating-system functions can be placed in the Kmap to improve performance or to

protect them from user programs.

Each Kmap has two bi-directional ports which may each be connected to a separate intercluster bus.

This permits the clusters to be connected in many different ways. At present, there are two intercluster

busses to which all five Kmaps are attached; hence there is a direct path between each pair of Kmaps, and

messages need never be forwarded via intermediate Kmaps. All communication between Kmaps and from

Kmap to Cm is performed by packet switching rather than circuit switching to avoid deadlock over

dedicated switching paths. The Kmap is provided with eight process-state contexts so that it can service

up to eight requests concurrently by switching from one context to another. Typically, it switches away

from a context while awaiting completion of a memory access emanating from that context.

A major advantage of the Cm* structure is its extensibility. Because the switching structure is not

centralized, it does not grow more complicated as the number of processors is increased. By contrast,

C.mmp [831, an earlier multiprocessor constructed at CMU, employed a 16-by-16 crosspoint switch to

route memory references to its sixteen processors. The complexity of such a switch grows by a factor of

n as n, the number of processors, is increased. Cm* is built from clusters of limited size, which may be

interconnected arbitrarily. Thus there is no inherent limit to the number of processors or the amount of

shared memory. Because intercluster messages need not pass through a central switch or bus, there is

also no architectural limit to the overall intercommunication bandwidth. Indeed, it has been estimated [74]

that a Cm structure of up to 10,000 processors could be built.

4li

68

5.2.2. Flexibility of the Switching Network
Multiple-processor computer systems vary along a continuum from shared-memory multiple-ALU

machines like the ILLIAC IV [5], to multiprocessors in which each processor may access any portion of

memory though it is directly connected to one portion of memory, to computer networks where each

processor may directly address only its own memory. Cm's Kmaps can be microprogrammed to emulate

either of the latter two structures, or other interconnection structures such as rings and cubes.

For example, if the Kmap is loaded with microcode which cannot map an address generated by one

processor to the memory of another, Cm* becomes, in effect, a network of LSI-11's. It is useful to

compare the performance of a multiprocessor with a network, as it seems intuitively true that a network

should be cheaper than a multiprocessor with the same processor-memory pairs, due to the relative

simplicity of the interconnection hardware.

Levy Raskin [55] performed two experiments comparing Cm* as a multiprocessor with Cm* as a

network. His results showed that, at least for some practical multiprocessing algorithms, a network can be

competitive with a multiprocessor. The first experiment used an integer-programming application which

exhibited rather low communication traffic:

Set-Partitioning Integer Programming The set-partitioning algorithm implemented for
Cm* uses an enumeration algorithm which performs an n-ary tree search in a large,
relatively sparse binary matrix for a minimum-cost solution. The matrix is two dimensional;
its size is usually on the order of hundreds by thousands. The problem is to solve

min(C.x A I[= e,, x = 0 or 1 for 0:_< j _5 N)

where A is an M x N binary matrix, g is a vector of length N, and e is the identity vector of
length M.

As an example, consider the airline-crew scheduling problem. The rows of the A matrix

correspond to a set of flight legs to be covered during a specified period, and the columns
of A correspond to a possible sequence of tours of flight legs made by one crew; g is a
vector containing the cost of each tour. A feasible solution consists of a set of tours that

satisfy all the flight legs (one and only one crew makes a flight leg). The algorithm seeks
the solution with the lowest cost.

The Integer-programming algorithm was run on both Cm* configurations. In the network configuration,

all interprocessor communication must be via messages (transmitted by value) rather than shared

memory. The shortest message could be transmitted in 85 jsec. The algorithm was tested on five sets of

data. When the matrix and other read-only global variables were replicated in each processor, the

communication overhead was moderate, about 1.3 Mbits/second. Nonetheless, the network configuration

69L

6I

70

4) 60
Dash - NwitiprOCessor

gn Solid - Network

0

30

1i" 3 4 NLJ m be r o fprocesses

Figre 1:Comarionof Integer Programming on Network and

Multiprocessor Configurations, Cases 1 and 2

400

Dash - Multiprocessor

Sid - Network

300

250

4'

-- - °--

70

actually performed better than the multiprocessor configuration (Figures 21 and 22), perhaps because its

microcode is simpler.

The second network experiment involved a speech-recognition task with complex and intense

communication demands. It was an application of HARPY, a speech-recognition system developed at CMU

[39, 18]. It implemented a voice-input "desk calculator" with a 32-word command vocabulary. Despite

the fact that the algorithm was carefully tuned to minimize interprocessor communication, the optimal

number of processors in the network configuration was only three; as additional processors were added,

execution time inc.-eased due to the high message rate. By contrast, the multiprocessor configuration

could achieve performance gains with up to seven processors.

To implement large programs on Cm*, it is necessary to expand the LSI-1 1's sixteen-bit address space.

Here, too, the Cm* architecture provides considerable latitude. Each Slocal has one map bit and one

relocation register for each 4K-byte page of its Cm's address space. The map bits can be selectively set

by the Kmap to cause various portions of the Cm's address space to be mapped, via the Kmap, to remote

Cm's or remote clusters. References which are not mapped to other Cm's can be relocated within the

local memory of the same Cm. The Slocal relocation registers too can be updated by the Kmap

microcode. Hence a running program can be given access to different portions of Cm* memory at

different times. The Kmap's data RAM can be used to cache recently accessed mapping information.

Different Kmap microcodes have employed very different strategies for mapping addresses and managing

the cache.

5.2.3. External Control of Experiments on Cm
There are several reasons why Cm* needs to communicate with other computers. When multiple

groups are using Cm* simultaneously for operating-system development, some external machine must

keep track of who has what resources so that the groups do not interfere with each other. When large

multiprocessor experiments are performed, perturbation is minimized if performance data is archived by

an external computer. It is occasionally desirable to perform an application cooperatively between Cm*

and other computers. Finally, as a research computer, Cm* does not warrant a fully developed set of

utilities. Software development can be streamlined if the compilers and editors on other machines can

conveniently operate on Cm 0 code.

Some of these functions are provided by a PDP 11/10 known as the Cm° Host. Anyone who wishes

access to Cm* first logs into the Host from a terminal anywhere in the Computer Science Department.

Then he reserves some set of resources. These usually consist of individual Cm's, or entire clusters. To

OIL

71

POP.10

Oute Cluster 2

- osHet n

Ethernet cable etc_..,

Figure 23: The Cm* Hardware Environment

use a pre-loaded Cm* operating system, the user need reserve only a single serial line attached to one

Cm. To load an operating system, one or more entire clusters are required. During the daytime, two

different operating systems are normally running in two different partitions of Cm*.

The Host can be used to start, stop, and single-cycle Cm's. It can also be used to "listen to" serial lines

selectively, so that if several processors are sending him output simultaneously, the user can temporarily

gag" all but one of them to look at output from the other uninterrupted. Should he choose to listen to all

his processors, he can have each line of output prefixed by the name of the processor which sent it.

Through the Host, one gains access to the three Hooks processors, which are special microprocessors

attached to the Kmaps. The Hooks run a powerful debugging tool known as KDP, which can load, start,

and stop and single-step a Kmap, and examine its registers or RAMS. With KDP, microcode can be

debugged on Cm* itself, rather than on a software simulator. This is important, because in a

multiprocessor, microcode bugs are often timing dependent and incapable of re-creation in a simulator.

.. I t ,

72

The diagnostic processor is a PDP 11/10 connected to the Host. It runs diagnostic programs on

unused Cm's and to maintain an error log. These records are important for the management of a large

multiprocessor.

Cm ° communicates with other general-purpose computers over the Computer Science Department's

ETHERNET. Files, particularly object-code files, are transferred over this link to Cm*. The data-aggregation

facilities of the SMON monitor [701 run on a Vax and gather data which is shipped in packets from the

resident monitor running on Cm*. Commands are sent to the resident monitor from the Vax, making it

possible to control Cm* experiments from an external machine. Figure 23 is a diagram showing how Cm*

is interfaced to other devices and computers.

5.2.4. Experimentation-Environment Software

Cm* provides a flexible, layered experimentation environment. The experimenter may use as many of

the layers as he deems appropriate for his application-from the "bare" hardware to sophisticated

experiment-management tools. We shall mention the components of this environment, then return to

describe them in detail.

An operating system is the foundation of any software environment. Cm * has two: STAROS and MEDuSA.

They are instrumented with sensors to allow monitoring. The utilities run as user programs on top of-an

operating system. On Cm* they are heavily oriented toward providing facilities for rreating and controlling

sets of concurrent processes. The top level of the experimentation environment consists of three

components, a schema manager, a monitor, and a workload generator. These allow speedy construction

of synthetic tasks to exercise various portions of the multiprocessor.

5.2.4.1. Operating Systems
STAROS (29] is an operating system for the support of task forces: collections of processes cooperating

toward the achievement of a single goal. These processes are usually small, with less responsibility than

the average process which runs on a uniprocessor, and they proceed in parallel to take advantage of the

multiprocessor architecture. STAROS strives to make processes cheap enough that many functions which

are ordinarily accomplished by procedure calls--equests for operating-system services such as memory

allocation, for example-can be performed instead by separate concurrent processes.

In addition, STAROS is an object-oriented operating system: every action performed by the system is the

application of some function to one or more object.,. STAROS objects include basic objects, which are

similar to segments in ordinary virtual-memory systems; stacks, deques, and mailboxes, whose semantics

73

are implemented in microcode; and abstract objects of user-defined types. The representation (e.g. data)

of an abstract object is protected from being accessed or modified except by the small set of procedures

which constitute its type manager. This facilitates the construction of software in terms of modules which

have small and well protected interfaces.

Finally, STAROS is a message-based operating system. Message primitives, which are efficiently

implemented in Kmap microcode, furnish support for interprocess communication and synchronization

and function invocation.

MEDUSA [50], another Cm * operating system, has been strongly influenced by the underlying Cm

hardware. The goal of the MEDUSA project is to create an operating system with three attributes:

modularity, robustness, and performance. Two aspects of the architecture influence how these goals are

attained: Cm*'s memory is uniformly addressable-processes on different processors can reference the

same memory; and the hardware is distributed, with a time penalty for accessing distant words of memory.

An examination of these issues resulted in an operating system with three properties. Functions of the

operating system are performed by disjoint utilities that are physically distributed; each utility implements

some abstraction for the rest of the system. Utilities are organized as task forces, which are similar to

STAROS task forces, except for the degree of sharing: memory may not be shared among an arbitrary set

of processes; rather each segment is either global to the task force, or private to a particular activity-the

MEDUSA term for a component process of a task force. Third, utilities communicate via messages, as in

STAROS.

As in STAROS, the MEDUSA message operations are microcoded for the sake of efficiency. The main

difference is that MEDUSA messages are byte streams sent through pipes, similar to pipes in UNIX. A pipe

can be nearly 4K bytes long, so a rather long message can be sent, providing there is room in the pipe. On

the other hand, STAROS messages consist of only one word, or one capability (a protected pointer to an

object). Consequently, STAROS message communication is generally done by reference-a pointer to the

data is passed-while MEDUSA messages are passed by value.

In order to promote an efficient implementation, MEDUSA has attempted to adhere more closely to the

Cm* hardware structure than has STAROS. For example, STAROS supports a full capability-based

addressing scheme. An address names a capability, which indirects through a descriptor to a segment of

memory. A MEDUSA address names a descriptor directly, avoiding one level of indirection, but affording

less flexibility in sharing.

Il

74

Many of the differences between the designs of the two systems can be explained as follows. STAROS

views Cm* basically as a multiprocessor. Task forces consists of processes that share global data. Hence
it is convenient and efficient for processes to communicate by passing references. All physical movement
of data is explicitly requested by some process. Processes may migrate from one processor to another.

MEDUSA views Cm* basically as a tightly coupled network. Messages are passed by value.
Transmission of a message physically relocates that message from one memory to another as in a
network. Block movement of data is integrated into the message primitives. As on a network, a process
remains associated with a specific processor. Recall, however, that MEDUSA does permit processes in the
same task force to share memory independent of its physical location.

5.2.4.2. Support Software
Few existing languages offer comprehensive facilities for defining the many components-code, data,

processes, and mailboxes-that constitute a task force. Objects must be created and named, and placed
in appropriate physical memories. Both operating systems have provided support software to deal with
these issues. MEDUSA has built its own linker, known as MEDLINK. Its directives allow the task-force author
to control how resources are utilized by the activities that make up a task force.

The STAROS project has developed a separate language for the specification of task forces. Called
TASK (33], it provides inter-process naming and resource-allocation mechanisms. it can be thought of as
anextension to the BLISS language [84], in which STAROS modules are written. TASK provides a way to

declare names which can be shared among the STAROS modules in a task force. It generates loader
directives for constructing the task force. TASK can specify the objects anid processes which are to be
created when a task force begins execution. Its resource-usage directives can state, for example, that a

process should execute on the same Cm which contains its code; that two processes should share the
same Cm; or that two other processes should execute on different Cm's or in different clusters-to
decrease contention, for instance.

5.2.4.3. Support for Experimentation
Several elements make up Cm*'s Integrated Instrumentation Environment (lIE).

e First there is the software which manages the experiment-takes a description of the
experiment, causes the experiment to be run, and then stores its results. This is called the
schema manager.

* Second, the SION monitor (70] gathers resou rce- utilization data while the experiment is
running. It gets its information from sensors embedded in the operating system. Each sensor
records the state of a resource.

75

User

tasei of data-

Arcs ind,caLe transte f :h ena
mJanz-'er

Relationa|

C -- nstru-

Resident menled mented
monitor Operating Stimuius,Relational Syt mtr

Moio Run-Time System

Figure 24: The Integrated Instrumentation Environment

* Finally, there is the task force which is to be measured, called the stimulus. It may be either an
application program or a synthetically generated workload. Cm*'s workload generator is
PEGASUS [61].

Figure 24 shows how these components fit together. Active at experiment run time are the instrumented

stimulus; the instrumented operating system; and the resident monitor, a process which enables and

disables the sensors and collects data from them.

A schema is a complete experiment description, consisting of a task force to be measured, monitoring

directives, system configuration information, and experiment directives written in the workload-generator

language. The results of an individual experiment are captured in a schema instance. Schemata are

archived by the schema manager. They may be created either from scratch with a conventional text

editor, or generated automatically during a series of runs, by having the schema manager record the

commands which are used. The schema manager scans the schema and sends directives to the run-time

system. These include global initialization commands for the entire experiment along with commands to

set up, start, and terminate each run.

SIMON is a high-level multiprocessor monitoring program. The user asks a high-level question, which

SIMON attempts to map into low-level questions. For example, if asked for the utilization of a particular

processor, SIMON would consult its relational database to discover where the resource was located, and

what kind of sensor existed to record usage of the resource. Then it would enable the sensor. Some of

- : II II I Il il , ,,' :' . ..* ...' " -- .= l .g l

76

In-Fire B4 OR (B5 AND 86)
Rule

84 B5 B6

S/+

B1 12 B3

Out-Fire (B1 AND 82) OR B3

Rule 60% 40%

Figure 25: A Node Corresponding to a Subtask

the entries in the database tables contain information which does not vary much with time, for example,

the list of processors in the system. Other entries instead contain descriptors for sensors embedded into

the operating system. If one of these entries is read, the corresponding sensor will be activated. SIMON

itself runs on a Vax and communicates with the resident monitor on Cm* under STAROS. A compatible

resident monitor will soon be built for MEDUSA.

The final component of the liE is the workload generator PEGASUS. Some measurements can best be

made with synthetic workloads which exert precise loads on particular components of the system. In

addition, it is usually quicker to compose directives for a workload generator than to write an application

program with the same characteristics.

PEGASUS represents a task force as a graph. The nodes of the graph are the subtasks (i.e. processes or

activities), and the arcs are buffers (e.g. mailboxes) that can queue data variables flowing from one

subtask to another. The firing rules are boolean expressions that state which arcs must contain tokens

(input firing rule) before the node fires and places tokens on which output arcs (output firing rule). The

output firing rule can be expressed probabilistically. For example, it can state that an output token will be

placed on arc B3 with a probability of 40%, or on both arcs B1 and B2 with a probability of 40% (see Figure

25).

The subtasks themselves are programmed in terms of simple statements and control constructs. A

14

77

simple statement says that a particular action is performed a given number of times. For example, <a P r?)

says that action a, is performed r. times. An action consists of a memory reference or the firing of a token.

Simple statments may be arranged sequentially, or they may be encapsulated in loops. The Select

statement allows one of the branches of a case-like statement to be chosen probabilistically. There is

another statement which varies the values of parameters each time a loop is performed. This allows an

experiment to be repeated automatically under slightly different conditions each time. PEGASUS has been

interfaced to MEDUSA, and a STAROS implementation is in progress.

5.3. Research in Distributed Systems
A multiprocessor like Cm* is an versatile test bed. Algorithms can be tested to see how efficiently they

decompose for multiprocessing. Interprocess communication systems-such as the STAROS and MEDUSA

message systems-can be compared. Experiments can be performed with different ways of organizing

task forces. The hardware can even be evaluated, to decide which components are performance

bottlenecks arnd deserving of close attention in future multiprocessor designs. We will describe some of

the results which have been obtained using Cm*.

One important question is whether multiprocessors can be cost-effective computational engines; in

other words, is there a substantial amount of computing that they can perform more efficiently than

alternative architectures-say, fast uniprocessors or networks of smaller computers? Germane to this

question is the issue of speedup.

5.3.1. Speedup
At first glance, it might seem that most algorithms would run faster on a multiprocessor. Few

algorithms, after all, are strictly sequential by nature. But offset against the potential parallelism is the

overhead of creating, synchronizing, and communicating with additional processes. These are pitfalls on

which many algorithms falter. The question thus becomes: Are there algorithms for important classes of

problems which can effectively exploit the parallelism offered by a multiprocessor?

Speedup is a useful measure of whether an algorithm succeeds in harnessing the potential parallelism

of a computer like Cm*. It is defined as E./ Em, the ratio of the elapsed time required by a uniprocessor

algorithm to the elapsed time taken by a multiprocessor algorithm for the same computation. If n L

processors are used, the speedup is generally between 1 and n. Sometimes when a multiprocessorI

algorithm is run on a one-processor configuration, the speedup will be less than one; an expressly

uniprocessor algorithm would have been faster. Occasionally one encounters a speedup of more than n.

We take up this topic in Section 5.3.1.5. For most algorithms, the speedup curve is convex in the number

78

of processors; speedup rises as processors are added, up to a certain point. Then the speedup begins to

fall, meaning that adding more processors actually slows down the computation. Thus, another

interesting question is, What is the optimal number of processors for executing each algorithm?

During the past few years, we have measured the speedup of several algorithms on Cm*, under widely

varying conditions. Early experiments were performed with only a 10-processor Cm ° system, precluding

realistic multicluster investigation. In later experiments, the number of Cm's per cluster has changed from

time to time. Some experiments have enjoyed the full support of an operating system; others have been

built from scratch, using only rudimentary Kmap microcode. Among these algorithms are a quicksort, a

partial differential equation solver, a railway-network simulation, and the integer-programming algorithm

first mentioned in Section 5.2.2. We shall describe them as we consider particular speedup issues.

5.3.1.1. Theoretical and Practical Speedup

Some algorithms lend themselves to more speedup than others. We say that the algorithm exhibits a

linear speedup if the time taken by an n-processor version is one-nth the time required by the

uniprocessor version. Two of our algorithms, partial differential equations and integer programming, have

a theoretical possibility of nearly linear speedup. On the other hand, the theoretical speedup s of the

quicksort algorithm is only

2
1 1 p p-- = -- + , (1)

S p Iog2n

where p is the number of processes and n is the number of elements sorted.

Linear speedup is the maximum normally obtainable by multiprocessor algorithms. Computations which

fail to attain it suffer a decomposition penalty [75], which has two components, algorithm penalty and

implementation penalty.

The algorithm penalty arises from the nature of the algorithm itself, and it also has two components [9].

One of these is the synchronization penalty imposed by the algorithm; in other words, the amount of time

that some processors are idle while waiting for other processors to deliver results. The other is the

complexity of the reconstitution computations; in other words, the time required to combine the results

generated by the individual processors into an overall result for the entire computation. This component is

insignificant in the algorithms presented in this paper, but not for all algorithms, for example, the power-

systems simulation implemented on Cm* by Dugan, Durham, and Carey [15,16,9, 76].

79

The implementation penalty is a consequence of executing the algorithm on a particular hardware and

system-software configuration. It is also made up of two components. The first is the degree of coupling

between the parallel processors. It reflects the overhead of the interprocess communication (e.g. via

global data or message passing) required by the algorithm. This penalty diminishes, for example, as the

message-communication microcode is optimized. The other component is the impact of process and data

placement: Cm's memory- reference hierarchy slows down processes which need to reference non-local

data.

Algorithms with little decomposition penalty show the most speedup. This implies little synchronization

or communication, few references to large global data structures, and simple reconstitution computations:

in short, processes which are relatively small and independent.

5.3.1 .2. The Influence of Synchronization
How much does synchronization cost?7 As a case in point, consider the partial differential equations

algorithm:

Partial Differential Equations. The objective is to solve Laplace's partial differential
equation (POE) with given boundary conditions (Dirichlet's problem) by the method of finite
differences. The equation

a2Z a2Z(2

is solved for points of an m-by-n rectangular grid, where only the values at the outer edges
of the grid are given. The solution is found iteratively. On each iteration the new value of
every element is set to the arithmetic mean of the values of its four adjacent neighbors.
Each process runs on its own dedicated procressor; it performs the iteration for a fixed,
continuous subset of the grid array, which will be called a task. Thus, the processes are
distinguishable. The algorithm was implemented on the 10-processor Cm* by Levy Raskin
[55], and updated by Jarek Deminet [13] for the 50- processor system.

Several different variations [6] of this algorithm have been implemented on Cm*. All methods use one

process per processor, so these terms can be used interchangeably. The processors iterate on equal-

sized partitions of the grid.

1. Jacobi's method. At the beginning of each iteration, a processor retrieves its partition from a
global array. New values are computed for each element of the partition, then stored back
into the global array. This storing is performed inside a critical section. The processor then
checks its error vector (computed from the difference of the new and old values In its
partition). If the error vector is smaller than a pre-specified limit, the processor reports that it
has finished. Otherwise it blocks, until the other processors have completed the current

80

.7 .Method 4

^ Method 2
C Method 3

AMethodO0

a 4 a

Figure 26: Comparison of Speedup for Different Methods of POE

iteration. Iterations are performed until all processors have finished.

2. Asynchronous Jacobi Method. This method is the same as method 1, except that a processor
does not wait for the other processors to finish before starting on,the next iteration.

3. Asynchronous Gauss-Seidel Method. This method is similar to method 2, except that the
processor uses newly computed values as soon as they are available, instead of the values
known at the beginning of the iteration.

4. Purely Asynchronous Method. To compute new array values, this method uses the most
~recent values of all components by reading them directly from the global array and writing the

updated values back to the global array (without any critical sections or synchronization). It
uses a critical section only for a processor to report that it has finished.

Raskin compared these algorithms using a 21 x 24 array (504 elements) on a one-cluster Cm* system

with a maximum of eight processors. His results are shown in Figure 26. With eight processors, method

I yields a speedup of just over 5.0; method 3 gives a speedup of better than 5.3; method 2 yields 6.4; and

method 4, almost 7.3.

An apparent anomaly in these figures is the lower speedup of method 2 compared to method 3, though

the values used in asynchronous Gauss-Seidel iteration are nominally more up-to-date. However, the

3l

-2

81

uniprocessor Gauss-Seidel algorithm is almost twice as efficient as the uniprocessor Jacobi algorithm.

Because it cannot quite maintain this advanta.'e as the number of asynchronous processes increases, the

speedup of the asynchronous Jacobi algorithr-, is greater. In fact, all of the asynchronous algorithms take

more iterations as the number of processors increases [6]; but the rate of increase with method 3 is

greatest, followed by method 2 and then method 4. (The number of iterations taken by the synchronous

Jacobi algorithm is independent of the number of processors.) Nonetheless, method 3 is still faster than

method 2 for eight processors, by a margin of 38 percent. Beware of confusing speedup with speed; a
slower algorithm may display a better speedup.

Note that the asynchronous Jacobi and Gauss-Seidel algorithms are the only two which demand
precisely the same amount of synchronization (critical sections at the beginning and end of an iteration,

no waiting for other processors). Regardless of execution time, each time the synchronization
requirements are decreased-from method 1 to methods 2 and 3, and then again to method 4-speedup

improves. Hence, the degree of synchronization seems to be the dominating factor affecting the speedup

of the algorithm.

The cost of synchronization is also illustrated by a comparison of two methods of simulating the

structure of liquids.

Simulation of Molecular Motion. Given the microscopic interactions between particles,
we want to predict the static and dynamic properties of a collection of such particles.
Macroscopic quantities are obtained by an averaging according to one of two methods-
either ensemble averaging or time averaging. The Metropolis method [44] employs
ensemble averaging. To generate each new configuration, a single particle is moved. The
bottleneck of the calculation for each move is the computation of the binding energy for
each particle, which involves O(N) calculations. The parallel algorithm uses K processors
in an attempt to reduce the complexity of this step to O(N/K). The interactions can be
evaluated in parallel without interprocessor communication, but the contributions
calculated by each processor must be added together. The complexity of this step s O(N).
In addition, the computation must be synchronized at each move.

The molecular-dynamics algorithm [80] uses time averaging. First, an initial set of
velocities for the particles is calculated. Given an initial set of coordinates, the velocities
can be used to predict a set of coordinates at a later time. A summation is again performed
to find the binding energy, but with this algorithm, the summation can be reordered to
allow a proce4=or to sum its subset of binding energies locally, with the global summation
being required only once at the end of the computation.

These simulations are described by Ostlund, Hibbard, and Whiteside [49]. This problem
is representative of the general problems involved in the theoretical study of molecular

~do

......Theoretical Speedup.
*--- Monte Carlo.
.-.-- Molecular Dynamics.

20.

15.

10.

5.

0 5 10 1 5 2025
Number of Processors.

Figure 27: Speedup of Molecular- Motion Simulation

83

motion. The results shown in Figure 27 are for a system of 50 particles.

The molecular-dynamics algorithm shows better speedup than the Metropolis algorithm. One factor is

that the molecular-dynamics algorithm avoids summing of shared variables. In addition, since particles
move simultaneously rather than one at a time, the 0(NW) serial computation of the binding energy is

converted to an O(N 1K) parallel computation using K processors. A processor computes O(N 1K)
interactions between synchronizations, instead of 0(N/K) interactions as in the Metropolis algorithm.

Both graphs exhibit a zig-zag pattern because the particles are parceled out among the processors as

evenly as possible. Each time that there is a decrease in the number of particles handled by the "busiest"

processor, speedup increases markedly. Note, for example, the large jump in going from 24 to 25 '
processors; in the latter case, no processor need handle more than two particles.

Both of these algorithms for molecular motion are synchronous, requiring lock-step iteration; no
asynchronous molecular dynamics equation is known. Significant hurdles stand in the way of developing

an asynchronous algorithm; for molecular dynamics, it would require averaging the interactions between

particles occupying different positions in space and time. In general, even when an asynchronous

algorithm exists, it is more difficult to prove its convergence. It must reliably attain the same final state

each time it is repeated, yet it passes through a sequence of intermediate states which is unpredictable

due to slight variations in processor speeds.

5.3.1.3. The Placement of ProcessesI
On a multiprocessor like Cm* with a non-uniform reference time to different portions of memory, the

placement of processes and data can have a major impact on algorithm performance. What factors need
to be taken into account in deciding how they are to be distributed? The first is locality of reference. To

expedite memory references, data should be local to the processor which references it. Although this is

not feasible for shared global data structures, it still pays to minimize the distance between processors and

their data.

For example, Raskin's version of the PDE assigned processors to array partitions essentially at random.

But not all of the processors had the same amount of work to perform. Those that operate on partitions in

the "middle" of the grid require more iterations than the ones that are close to the boundary, so ideally

they should be solved by the fastest processes. When Deminet re-implemented the algorithm for the

multicluster STAROS, he created a version that satisfied this criterion; we will call it the improved processor

selection version.

84

16

1 14

12

10

Number of processes

Figu re 28: Effects of Improved Processor Selection

Figure 28 displays the effect of improved processor selection. It is significant when the number of

processors is larger than 16, meaning that more than two clusters are involved. At thirty-five processors,

the improvement is about 20%.

5.3.1.4. The Distribution of Data

While thoughtful placement of processes can greatly improve locality of reference, it does little to

reduce memory contention. If a global data structure is deposited in the local memory of a single Cm, then

many processors will compete for access to the same Slocal and memory, so response will deteriorate.

The impact can be substantial because many multiprocessor algorithms, such as the PDE, make a large

fraction of their memory references to a single shared data structure.

Deminet performed an experiment to determine the effects of data placement. Method 4 of the POE was

run on a 150.by-150 grid. In one case, the data was centralized in the memory of a single Cm. In the

other, the pages of the array were distributed between clusters to maximize cluster locality of reference.

Figure 29 displays the results. The centralized-data version achieved a maximum speedup of 16, while the

distributed -data version yielded a speedup of 28 with 37 processors (the most processors for which it was

run), apparently without reaching its maximum. It is also illustrative to consider the degradation of an

IA

85

30.
C)

C.) 25 Theoretical

20.

15. 3

10.

0, 5 10 15. 20 25 30 35 40
Number of processes

Figure 29: Effects of Distribution of Data

individual processor's performance: in the distributed-data version, all processors ran at least 68% as fast

as the fastest processor, while in the centralized-data version, the slowest processor ran at only 28% of the

speed of the fastest.

There is a tradeoff between locality of reference and memory contention. When data is too centralized,

many processors are contending for the same memory. When data is too widely distributed, processors

have to make too many expensive intercluster references. Consider again the PDE. When processors are

added to the experiment, the strategy is to fill up one cluster before beginning the next. The curve in

Figure 30 first shows a dropoff in speedup between 20 and 21 processors, just as the experiment moves

into its third cluster. The explanation is that data is now distributed between three clusters instead of two.

All but one of the processors need to perform intercluster accesses to access data in the third cluster.

The extra intercluster references slow down the entire experiment. Notice the additional, and more

pronoujnced, drops in performance as the experiment crosses into its fourth and fifth clusters. Deminet

called this the crossover phenomenon.

As we have seen, many factors must be taken into account when deciding how to distribute data. There

is no straightforward way to estimate the interplay of these factors and determine how to place the data

objects in the most desirable location. Cm°'s operating systems provide no automatic distribution

g4l

86

20.

C 16.

14

12

10

8

6

4

2

0 10 20 30 50
Number of processes

Figure 30: The Crossover Phenomenon with the POE

algorithms. The TASK language permits the programmer to specify constraints on object placement, and

uses heuristics to attempt to satisfy them, but it cannot guarantee optimality.

The Cm quicksort is another algorithm which operates on a large shared data structure:

Quicksort. In the multiprocessor quicksort 160], a number of indistinguishable

processes, one per processor, take part in sorting a global array of integers. The
processors share a stack, which contains descriptors for continuous subsets of the array
which have yet to be sorted.

On each pass, a processor tries to pop a descriptor for a new subset from the shared
stack. If successful, the processor partitions the subset into two smaller ones, consisting
respectively of all elements less than, and greater than, an estimated median value. After

this partitioning, a descriptor for the shorter of the new subsets is pushed onto the stack,
and the longer subset is further partitioned in the same way. This algorithm was
implemented on the 10-processor Cm* by Levy Raskin [55]. Jarek Deminet [13] adapted it

to the 50-processor configuration, modifying the algorithm to cut down on references to
the shared stack.

Placement decisions are simpler to make if an algorithm has a predictable pattern of reference, for

,t, IllI ' IB '

87

C. 10 -

. Case I
S X Case 2ci

aCase 3
Ca3e 4
@ C30 5,
e Linear Sped Up

8

5 A#

4 "=

3 1

2

oC 2 3 4 5 6 7' ,8

Number of Processors

Figure 31: Speedup of Ouicksort

example, if each process is statically associated with a partition of data which is known at compile or load

time. The PDE is such an algorithm; hence it is possible to arrange for the data to be close to the

processor, and it displays an increasing speedup even for relatively large numbers of processors. On the

other hand, the quicksort's processors dynamically choose subsets of the global array from a shared

stack; it is not known a priori which processor will manipulate which data. The quicksort (see Figure 31)

reaches maximum performance at a relatively small number of processors.

5.3.1.5. Greater Than Linear Speedup?

Is it ever possible for a multiprocessor algorithm to exhibit greater than linear speedup? Intuitively, t,,e

answer is no, because such an implementation would do less total work than its uniprocessor cousin. By

simply turning its independent processes into coroutines, one could produce a faster uniprocessor

version of the same algorithm. This assumes, of course, that as much memory was available to the

uniprocessor version as to the total multiprocessor version; otherwise more frequent swapping would

retard its execution speed. Also, if process switching were much slower than synchronization primitives,

the multiprocessor version might gain a more-than.linear advantage over the coroutine version, but this

could not properly be called speedup. .

Nonetheless, we do occasionally encounter a particular algorithm execution with more.than-linear

88

I..

, 20

C 18

14-

12

10

8

6.

4

2

0 5 10 15 20 25 30 35 40
Number of processors

Figure 32: Speedup of Integer-Programming Computation

speedup. One such case occurred with the integer-programming algorithm first mentioned in Section

5.2.2, which was implemented by Raskin for the 10-processor Cm*. This is a search algorithm. Its

initialization phase puts a large number of possible solutions in a global stack, from which all the

processors chocse their work. As the search proceeds, a global variable holds the cost of the best

solution found so far by any processor. All processors compare their current cost value to it, and begin to

backtrack in the search when the global cost is lower.

It is possible for the multiprocessor version to be "lucky". If one of its processors encounters a

near-optimal solution at the outset, none of the processors will have very much work to do. The

uniprocessor version, which does not encounter the near-optimal solution until later, has the disadvantage

of having done a more complete search over the earlier possible solutions. But the opposite can also

happen. Suppose the near-optimal solution turned up, say, first of all. Then the uniprocessor and

multiprocessor versions would encounter it at the same time. But before its cost could be determined, the

other processors in the multiprocessor version would have wasted processing time on their initial

i'

89

solutions.

Hence, the multiprocessor version cannot be "lucky" all the time. A search program can occasionally

exhibit greater than linear speedup, but it cannot "on average" show greater than linear speedup, over all

possible sets of input data. The results shown in Figure 32 illustrate this. Only one of the five integer-

programming ru nanaged to surpass linear speedup.

5.3.2. Task-Force Organization
Implementations of the algorithms introduced in the previous section are quite simple. A single master

process is responsible for setting up and starting each of the other processes, known as slaves. The

slaves execute in parallel, perhaps synchronizing from time to time, until they have completed their portion

of the computation, and then notify the master. When all of the slaves have completed, the master reports

the results of the experiment.

Master-slave organization is one of the simplest task-force structures, and one for which it is meaningful

to measure speedup, since the multiprocessor algorithms have a uniprocessor analogue which can be

used for speed comparisons. Some algorithms have no uniprocessor version, for example, this simulation:

Railway-Network Simulation. The task force consists of a fixed number of processes (63
in this version), each of which represents a station. Two stations may be connected by a
unidirectional track. For a given station A a set of previous stations includes each station
B for which there is a track from B to A. The stations exchange messages representing
trains. The route of each train is an attribute of the train, determined when the train is
created. Each station serves the trains in the order in which they arrive.

Each process maintains its own simulated time. At any given moment, the simulated
time will probably be different-in different processes; thus the simulated time of sending a
train from one station to another is unrelated to the real time when the message
representing the train was created. Even the real-time order of events may be different
from the simulated-time order. Suppose, for example, that station A sends a message to
station C at real time 5. At this moment station A's clock may show the simulated time 50.
Station B mnay send a message to C at real time 7, but its clock may then show the
simulated time 40. The second message should be serviced by C before the first one,
since only the simulated time is relevant. In general, a station-process blocks until it knows .
the simulated time of the arrival of the next train from each station.

Unlike in the previous experiments, several processes may run on each processor.
There exists one additional process, the reporter, which records data sent to it by the
statiors. As programmed, the application may not be run on a uniprocessor configuration,

90

20,

18.

16.

14

12

10.

6

4

2

0 5 10 15 20 25 30 35 40
Number of processors

Figure 33: Speedup of Railway-Network Simulation

since the repor-ter must be running throughout the experiment. In fact, this task force will
fit in a minimum of four Cm's. The algorithm was programmed by Jarek Deminet in 1979.

It is very difficult to estimate speedup for this algorithm, because running time depends not only on the

number of processors, but also on the distribution of processes among them. In the impiernented version,

processes may not move from one processor to another. If they did, it v.'ould probably be necessary to

move their local data to avoid the pen131ty of i emote references. To move data would iiseif impose an

overhead. Thus the run time of the experiment depends heavily on the initial assignment of processes to

processors. Figure 33 graphs the run time vzi. number of processors. After an initially decreasing region

vhve-re the a~erage number of runnable processes is greater than the number of proces ,ors, there are

epar--ri-tIy random fluctuations in the graph, perhaps due to variations in the suit 3b,'-'ty of the iniial

aE-.ignrnent of processecs to processors.

5.3.3. Hardware Reliability Tests
I ong term reliability data for the components of Cm* has be.en obta ined by the A-,.'o-Diagncstic, a

program which continUOUsly exercised the hardwvare b,' running diagnostic programs on a!l otherwise idle

ccrnpul-er rr,o0iues. The diagnostics tostod fOLr dstinct components: the memori'ry, the irs!ructi.on sot', the

traps arid i:rLuPIS, Z--d the Slocal .-ind a Ennall 3r of the Kirap. The mcemory Icest Cc -S~s~s of lhirliee-n

COPY civaiabl. to DTIC does nqld
VOMHj MITl legible reproduction

91

subtests including a gallop test, marching ones and zeros, and shifting ones. The instruction-set test and

the trap-and-interrupt test check the functioning of the LSI-1 1 processor. The Slocal diagnostic tests the

registers and data path of the Slocal, among other things.

Table 1: Distribution of Transient Errors on Cm*

Diagnostic Test Used
Mode Memory Instr. Trap Slocal Total % Total

Burst 5 1 1 13 20 31.2
Simultaneous 5 1 0 5 11 17.2
Isolated 13 3 2 15 33 51.6

Total 23 5 3 34 64 100.0
% Total 35.9 7.8 4.7 51.6

In continuous measurements over a period of eight months, transient errors were noted more than

twenty times as often as hard failures (permanent faults which reflect an irreversible change in the

hardware. Of the transient errors, 83% of them were local, confined to only one Cm. Table 1 [78] reports

the data. A burst error consists of multiple errors in the same Cm within a short span of time.

Simultaneous errors affect more than one Cm; an isofated error is a single error in a single Cm. Transient

errors followed a decreasing failure-rate Weibull distribution. This is in contrast to the usual assumption of

exponentially distributed transient errors. Studies done on several other computers also reported a

decreasing failure rate [42].

5.4. Summary
We have tried to make general observations about the cost effectiveness of multiprocessor

computation, based on a variety of experiments on Cm*. These are only a sample of the work that has

been done with Cm ° . Aided by the experimental support provided by the Cm* test bed, a flexible

hardware/software architecture, we are continuing to broaden the range of our investigations. The long-

range issue is not whether Cm* itself, with its relatively primitive microprocessors, is a useful vehicle for

solving large problems, but whether multiprocessor architectures in general have an important role to play

in providing computational power.

Multiprocessors have some important advantages over uniprocessors. Since simple processors are

becoming quite inexpensive, multiprocessors of substantial size may prove significantly less expensive

than uniprocessors of the same power. Their total processing power is not so constrained by fundamental

physical constants as is the case for uniprocessors. Their cost advantage leads to another benefit: they

L,

can be cost effective without very high processor utilizations; they can afford to lose some computational

cycles to synchronization, for example.

We are optimistic that the benefits of multiprocessing can be realized in practice. Many algorithms have

a theoretically linear speedup, including the asynchronous partial -dif ferential equation solver and the

molecular dynamics algorithm presented in this paper. Other algorithms, such as the quicksort and the

power-systems simulation, do not decompose so effectively. There may be some problems for which there

is no good multiprocessor algorithm; for example, those that converge only with a high degree of

synchronization, or those that have memory-access patterns so unpredictable that data cannot really be

localized. In between these extremes, much more work is necessary to refine and automate the

techniques for decomposing algorithms and distributing processes and data. Our approaches have often

been heuristic, but they can provide the basis for more extensive and rigorous investigation.

7 AO-A120 056 CARNEGIE-MELLON UNIV
PITTSBURGH PA DEPT

OF COMPUTER -ETC
F/ 9/2"

REAL TIME STATUS MONITORING FOR DISTRIBUTED SYSTEMS.(U3

AUG 82 Z SEGALL, A.SINGH. R SNODGRASS OAS6I-8O C 5057
UNCLASSIFIED NL

93

Acknowledgments
Cm' is a large project. The authors wrote the paper, but performed only a fraction of the work. Even

this list of contributors is of necessity very incomplete. Richard Swan, Sam Fuller, and Dan Siewiorek

were major instigators of the hardware design. John Ousterhout was involved in the software effort from

the start, and along with Pradeep Sindhu, was primarily responsible for the MEOUSA operating system.

tAnita Jones, Bob Chansler, and Ivor Durham, along with Karsten Schwans, Steve Vegdahl, Mike Kazar and

Joe Mohan, designed most of the STAROS system. Zary Segall, Rick Snodgrass, and Ajay Singh were the

driving forces behind the liE. Levy .Raskin was the first experimenter, and he was followed by Jarek

Deminet, Neil Ostlund, and Bob Whiteside. Sarosh Talukdar oversaw the power-systems simulation work.

I I.

14

The Status Monitor

95

6. The Problem
R. Snodgrass

The cause is hidden, but the result is known.

-- Ovid, from Metamorphoses IV

6.1. The Cause and the Result
In the realm of programming computers, as in all analytic endeavors, one must first understand the

behavior before one can understand the underlying reasons for that behavior. As the computational

structures employed in programs tend toward greater complexity, computer system designers,

implementors, and users find it increasingly rare that they can agree with Ovid that "the cause is hidden,

but [at least] the result in known." Monitoring is a necessary first step in understanding a computational

process, for it provides an indication of what happened, thus serving as a prelude to ascertaining why it

happened.

The realization that monitoring is a difficult task, one that deserves study, has come only recently to the

computing community. The reason for this slow awakening is, again, the increase in complexity. When

computing systems (both hardware and software) were simpler, it was possible to adequately understand

the system's behavior with rather unsophisticated monitoring tools and the (considerably more

sophisticated) modeling techniques then available. Many aspects, such as characterizing the control flow

or determining execution times, were so straightforward as to not even being considered issues. Times

have changed, and many of these "non-issues" are now so problematic that systems often do not provide

any solutions to them.

This chapter (and the thesis in general) is loosely organized around a sequence of problem and result

statements. Implicit in each problem statement are the results generated by preceeding statements, since

one benefit of acquired knowledge is the ability to ask further, more precise questions. Each result will

bring about other questions, which will impact on the ensuing problem statement. At this point, the

problem statement is annoyingly vague:

Problem 1: What is involved in monitoring distributed systems, and why is it such a hard
problem?

The purpose of this chapter is to refine this problem statement into one which is more concrete and thus

more approachable.

96

6.2. Definitions
The definition of monitoring employed in this dissertation is a rather general one: monitoring in the

process of extracting dynamic information concerning a computational process as that process executes2

A computational process is simply anything that can be said to compute. Examples include the

microprogram, a subroutine, a conventional process, a collection of processes, or even an operating

system.

Computational processes differ primarily in the number of components to be monitored, from a single

line on a bus to the entire system, and in the time frame in which tha measurements take place, ranging

from hundreds of nanoseconds to months. The granularity at which the monitoring takes place has a

substantial effect on the methods used to collect data: different granularities demand radically different

approaches.

Dynamic information may also be spread over a large range of granularity, from information concerning

the sequence of micorinstructions executed during a particular time interval, to the average amount of

time a routine executes, to some global statistic concerning the execution of a whole series of programs.

This property goes hand in hand with the last part of the definition. If the information to be collected is not

dynamic, there is no need to collect it as the process executes.

Defining a distributed system is more difficult. Although John Shoch has several arguments to support

the contention that "there is nothing different about 'distributed' computing" [62], he also presents several

distinctions between distributed and non-distributed systems (his widely-shared belief is that there is a

difference). The two relevant to monitoring are

" Distributed systems seem to be characterized by a lack of central control.

" A quantitative difference in the number of system components (processors, memory,
addressing domains, etc.) leads to a qualitative difference3. This will not be possible for
distributed systems. How can we comprehend parts of the system without comprehending all

2There are at least two other definitions of monitor which should be mentioned. One use of the word monitor, prevalent in the
1960's and early 1970's. is as a synonym for operating system or at least the user interface to the operating system. The second
refers to an arbiter of access to a data structure in order to ensure specified invarients, usually relating to synchronization [25]. Both
definitions enphasize the control, rather than the observational, asects of monitoring.

3 At the same workshop [38), Richard Watson added several related attributes: more heterogeneity, distribution of state, and
communication via messages. And David Reed offered perhaps the best argument for monitoring in his characterization of
distributed systems: "In centralized systems, it has been possible so far for single persons to understand the entire system (even of
the size of MULTICS

!4

97

of it?).

These two aspects conspire to make monitoring a difficult (and thus interesting) task. A precise

definitiun of 'distributed' is not important; the intent of the title is to include the attributes listed above in

the problem domain.

The general definitions presented above allow concepts developed in this research to be applied to

several previously unrelated domains. This section closes with a discussion of representative utilizations

of monitoring information.

One use of monitoring is to facilitate the debugging of complex programs. Debugging proceeds in five

stages: (1) observe the behavior of a computer program; (2) compare this behavior with the desired

behavior; (3) analyze the differences; (4) devise changes to the program to make its behavior conform

more closely to the desired behavior; and (5) alter the program in accordance with these changes [45).

Monitoring is concerned with the first (and somewhat the second) stage in this process. The third and

fourth stages are still the province of the programmer (although the Programmmer's Apprentice Prniect

(64] is making some progress in this area); the fifth stage is routinely accomplished using text editors, anc?

could be automated given the automation of the fourth step.

Sophisticated monitoring tools are necessary to make efficient use of limited computing resources.

Ideally, such optimization wo'uld be done analytically, but in general a priori determination of runtime

efficiency is impossible. Th1us it is necessary to tune the application once it is implemented. Tuning

requires feedback on the program's efficiency, which is determined from measurements on the application

while it is running 4.

A third use of monitoring is to query the system, not for performance measures, but merely for status

information, such as how far a computation has progressed, who is logged on the system (the system

status command of most time-sharing systems), the state of certain files (the catalogue or directory

commands), or the quantity and nature of hardware and software failures.

And finally, monitoring information may also be used internally by the application program for various

purposes. For example, consider a program which varies the number of processes dedicated to a

particular function based on the request rate for that function. Inform-ation concerning the hardware h

4 obert Sproufl calied this tuning performance debugging: We not enough Just to show that a System~ woafs; you want it to work
na 381

98

utilization and the number of outstanding requests could be used by the program to determine whether to
start up more processes to handle the current demand (if the utilization is low and the request rate high)
[:.21. Monitoring information is also valuable for programs which must be reliable; the fact that a
processor (containing particular processes belonging to a program) has failed, for example, is important
to the program if it must be able to recover from such failures5.

6.3. The Impact of Complexity on Monitoring
The previous section indicted that monitoring is difficult because of the complexity and decentralization

of the process being monitored. The purpose of this section is to determine how increased complexity

impinges on the task of monitoring. The impact of decentralization is reflected more in the specific

algorithms and will be dealt with in later chapters. We will start by investigating the monitoring of the

program counter, or PC, certainly an important aspect of the dynamic state.

In the (good old) days, a program consisted of a single program executing on a monolithic operating

system on a single processor. The PC could be traced or sa-ripled. Tracing, which involves storing the

information each time some event occurs, is usually done at the procedure level, although it can be done
at the statement level with greater overhead. At the beginning of each procedure (or statement), code is

inserted by a preprocessor to increment a counter or generate a timestamp. A postprocessor is often

used to correlate the data with the source text of the program.

Sampling involves storing information when requested, asynchronously with the execution of the

program. Usually sampling is initiated by a clock tick, by an operating system call, or by a separate
process. The information gathered by sampling is stochastic; for instance, it can indicate what percentage

of execution time takes place within an individual routine, but it cannot reliably determine how many times
a routine was invoked. Sampling does have the advantage that it requries less resources, and thus
perturbs the system to a smaller degree than tracing.

In the past two decades the programming environment has changed radically. In some sophisticated
systems being developed today, a program consists of many interacting processes running on many
geographically distributed computers communicating over high bandwidth networks [Xerox]. These
systems differ quantitatively with systems of the past: where there was one processor, there are now tens
to hundreds; where there was one process, there are now many per processor; where there were a few

SEric Rosen, in an article describing a particularly intersting instability which occurred on the ARPANET (571. concluded that
"we need a better means of detecting that some high priority process in the Imp [a node on the ARPANETI, despite all the

safeguards we put in, is still consuming too many resources."

99r

1/O devices, there are now complex communication media, sopphisticated encoding formats, and

powerful interprocess communication protocols, all supported by large software components; where there

was a single contiguous address space, there are now many small, separately addressable objects, each

containing code or a specific data structure.

Returning to the example of monitoring the PC, we must first determine what the PC is for this new

environment. One possibility is to use the PC of each of the processes making up the program of interest.

For the single process example, the routine name and statement number within that routine can be quite

informative; a printout of, say, fifty routine names and statement numbers is rather overwhelming. This

quantitative difference necessitates a qualitative change in the monitor, for there is one aspect that
remains unchanged: the user (and especially the information capacity of the user) who must interpret the

monitoring data.

The presence of the user has been implicit throughout this discussion. Fundamentally, the user is not

interested in the PC at all; instead, the user wants an understanding of the state of the execution as it

evolves through time. This state manifests itself in many forms: the changing values of the variahles in the
program, the input read by the program and the outpu t produced, the constantly changing PC. All are

valid indicators of the program state and each may be sufficient when monitoring a single process.

Individually, however, they are woefully inadequate for monitoring distributed systems. Instead, the

monitor must be able to express the system state (as well as other attributes of the system) in a form useful

to the user.

As an example, suppose the monitor could provide this descripticri of the program state:

Process A is waiting on process B to acknowledge the xxx request; process Y is sending
process Z information concerning the object yyy; anid pro..ess M has completed.

There are several aspects to note in this example. The information the monitor displayed is both less

and more than a list of PC's. The monitor had to understand that a PC in a certain range meant that

process A was waiting for something, yet the exact PC was unimportant. Conceivably, the PC could have

been completely different and the monitor would have displayed the same information. In addition, the

monitor had to be able to look inside the various queues and buffers maintained by the communication

mechanism in order to be able to state that a process is waiting on another process to acknowledge a

particular request. Names had to be associated with the various processes, objects, and requests in order

to produce an intelligible state description. And finally, the monitor had to know that the user was

interested in the current state in terms of interprocess communication. Another perhaps just as useful

sante description is

Process A has used 75% of its resources, while processes X, Y and Z have used only 20% of
their resources.

The decentralization inherent in distributed systems also necessitates interpretation of the monitoring

data by the monitor. The mention of several processes in the previous example implies a degree of logical

decentralization; if those processes are on different processors, then there is also physical

decentralization. To present a global view of the program state, the monitor must integrate data collected

at geographically distinct sites. Simply determining what information to collect and where to acquire this

information becomes a diff icult task.

Result 1: The quantitative arnd decentralized aspects of the monitored system, coupled with
the limitied information handling capabilities of the user, demand an intelligent monitor.

At this point, the problem at hand is

Problem 2: What are the organizing concepts for a monitor which can collect information
from a variety of sources, interpret this information, and present it in a series of high level views
in a format comprehensible to the user?

6.4. Knowledge Representation
In its most general form, the process of monitoring is concerned with retrieving information from the

monitored system and presenting this information in a derived form to the user. Viewing the monitor as the

proverbial black box, it is fundamentally an information processing agent. As the previous sections have
indicated, this activity is rather sophisticated. Looking inside this black box, there is some form of
knowledge representation to direct the monitoring activity. Thus, there are at least two ways to abstractly

view a monitor: as a knowledge representation system and as an information processing agent. As will be
seen, both of these views are very fruitful. The rest of this chapter will investigate the knowledge
representation issues; chapter 2 will pursue the information processing aspects of monitoring.

In an examination of the discussion of a possible high-level PC, one starts to notice phrases such as
"the monitor had to understand." Now, in one sense, the monitor can't understand; it is, after all, only a

computer program. However, computer programs are remarkably versatile and almost any type of
desirable behavior can be programmed with the correct selection of data structures and algorithms.[
Hence, the process of "teaching the monitor" or "making the monitor understand" is transformed into the

more intellectually managable task of deciding what data structures and algorithms to employ within the
monitor.

These data structures and algorithms encode the knowledge the monitor can apply to the task at hand.

The majority of monitors did very little interpretation of the collected data, and thus used rather ad hoc

101

methods for determining what to monitor and how to perform the monitoring. Two recent systems have

addressed the monitoring of complex systems; it is useful to analyze the character of knowledge each

used to direct the data collection and interpretation.

Model's thesis (451, one of the first to systematically approach this topic, stressed the adoption of a

uniform model of a complex activity for use in monitoring. His monitor was designed to be used with

programs written in artificial intelligence languages such as KRL, which are themselves written in Lisp.

Despite the sophisticated control and data structures provided by these high level languages, most

debugging is still done in the implementation language. The complexity of programs written in these

languages is seriously limited by the lack of adequate debugging tools. Model argued that of the five

stages present in the debugging process (see section 6.2), monitoring has the most potential for

improvement at this time.f

The monitor collected events genierated by the interpreter (the monitor had no control over which

events were collected). These events were related to the program's data and control structures implicitly

in the routines generating the events. However, some cross- referencing was done, so that the monitor

knew, for example, that some events caused other events. The user could specify which events, as well as

which fields in these events, were to be displayed. The knowledge utilized by the monitor was wired into

the code.

Gertner's thesis [221 focussed on the flow of messages between processes in RIG [4], a distributedL

system constructed at the University of Rochester. In his system, Gertner described the computation using

finite state automata, with the transitions being events (usually messages sent between two processes in

the system). Associated with each message is a set of timestamps relating to the activity involved in

processing the message. These timestamps allow the monitor to calculate processing intervals, message

counts, overlapping periods, etc. A hiierarchy of finite state automata can be defined, with elementary

transitions at one level composed of multiple transitions at a lower level. This hierarchy allows monitoring

information to be presented at the appropriate level of abstraction. Again, the knowledge of how to derive

information from the timestamps was implicit in the monitor's code.

Unfortunately, these ad hoc approaches are simply inadequate for distributed systems. In Model's

system, events capture only the notion of state transitions. The system state must be inferred by the user.

Modelling all activity in terms of finite state automata, as in Gertner's system, while expressing to some

degree the semantics of the periods between the events, is overly restrictive. Sampling data (as opposed

to trace data) does not integrate easily into the scheme. The proliferation of extraneous states is also a

problem which results from a total reliance on this model.

102 1

In order to construct a monitor which can apply substantial knowledge concerning the system being

monitored, this knowledge must be organized in a coherent fashion. Thus a formalism is needed to

describe this knowledge. The formalism must, to some degree, encode the following knowledge:

" what information the monitor collects concerning the system;

" how new information can be acquired by the system;

" what dependencies exist between various components of this information;

" how the information relates to the data arnd control structures within the programs, and to the
data and control structures of the underlying operating system; and

" what information the user wants to see.

There are also three basic "notions" that must be characterized by this formalism. Two of these are the

concepts of "entity" (or "object") and the concept of "relationship" between two or more entities. The

monitor must understand that there are such things as processors, processes, memory, message ports,

semaphores, etc. and that certain relationships exist between these things, such as a process running on

a processor. In Model's thesis, for example, entities were the values of certain attributes, and the

relationships were the events themselves.

The third notion that must be characterized by this formalism is the concept of time. The monitor must

understand that facts are only true for a certain period of time, and that entities and relationships are

temporally bounded. For instance, in Model's thesis, time was one of the fields in each event record, and

queries could specify which time period the user was interested in. Also, Model's monitor understood that

events were sequential, and thus that some events were after others. However, the concept of something

being true for a period of time between two events is not represented within the monitor, and thus the user

could not request such information. Clearly, a multiprocess monitor must have a better understanding of

time.

The aim of this chapter has been to sufficiently refine the original problem statement into one which can

be attacked in concrete terms. This chapter has argued that

Result 2: Monitoring in fundamental terms is concerned with knowledge representation and
information processing.

This leads to the following problem statement:r

Problem 3: What knowledge is necessary to adequately monitor a distributed system, and
how is this knowledge represented within the monitor?

However, before we can address this question, we must investigate the information processing aspects of

103

monitoring.

I shall limit the scope of my investigation to the above problem. I will not deal in depth with the
uniprocess aspects of monitoring; instead I will concentrate on monitoring process-process sod process-
operating system interactions (the distinction between these interactions is lessening in importance [53]).

105

7. A Low Level Data Collection Mechanism
R. Snodgrass

Data collection techniques have been at the center of attention in previous work in monitoring, to the

exclusion of other areas such as representation and manipulation of the collected information. Most

papers on the monitoring of user programs describe profiling in a variety of programming languages. This

approach involves execution counts or timing at the procedure or statement level, using sampling or

tracing. These papers are simply variations on a common theme; there have been few advances since the

early 1960's, when sampling and tracing were first introduced. Data collection for monitoring of operating

systems has also relied on sampling or tracing Techniques for using special hardware have been more

innovative: since additionel logic imposes no overhead on the computation, capabilities such as event

counters, combinational and sequential logic on events, comparators, and histogram generators can be

provided. Network data collection has concentrated on performance evaluation issues and has been ,in

general, confined to techniques mentioned above. Recent systems have taken a more integrated

approach to monitoring, attempting to reduce the great effort necessary when using the low-level tools

previously available. A unified set of facilities for monitoring a packet radio network was developed at

UCLA. Gertner's thesis, described earlier in section, allowed relatively painless monitoring of a distributed

system at the message passing level. The Computer Network Monitoring System (CNMS), a rather

ambitious system designed at the University of Waterloo, used a sophisticated combination of hardware

and software to monitor a geographically distributed network.

In spite of these developments, an integrated approach to monitoring data collection founded on

fundamental concepts, goals, and limitations is still lacking. One possible strategy for developing such an

approach is to start with the relational model described in the previous chapter. Unfortunately, this

strategy is insufficient. Data collection must be strongly tied to the primitive relations referenced by the

user. The operationalization of a primitive relation, is a predicate which, when presented with a possible

tuple, will query the system and determine whether the relation is satisfied for that tuple. This predicate

provides a well-defined semantics for the relation, but does not allow a direct imi,:ementation.

Another possible strategy proceeds by developing a conceptual model of the behavior of the program to

be monitored, and attempts to represent that behavior witin the relational model. This strategy will be the

one pursued in this chapter. The next section begins with a comparison of data collection as performed by

a conventional data base system and by a monitor. A model of the environment where the data collection

takes place is then presented, followed by a discussion of the properties an effective mechanism must

have, The remainder of this chapter will present such a mechanism and examine how various aspects of

p uag'i4 PAa I I hI(L- III I

7~106

the environment impact on this mechanism. The discussion will be independent of any particular

operating system However, it is assumed that the monitor is partitioned into a resident portion, responsible

for collecting the event records and interacting with the operating system, and a system- independent

remote portion, responsible for analyzing and displaying the monitoring data. This separation is

necessary when monitoring a distributed system, where a resident monitor would exist at each processor,

sending collected data to the centralized remote monitor. The implementation follows this organization.

7.1. The Environment
Data collection in the monitoring domain differs from that in conventional database management

systems in several ways. In most information processing systems, the emphasis is on information

manipulation and retrieval, with mimimal aids for data collection. Although some systems provide tools for

key entry and point-of-sale data acquisition, data collection remains difficult to automate. The reason is

that the highly-structured databases must interface with much less regimented mechanisms: written and

oral communication, multiple incompatible data representations, psychological and societal constraints.

The monitor, as an information processing system, has much more control over the collection of data,

since that data is already available in digitized form, either resident on a bus line or network link, or stored

in registers, main memory, or on disk, certainly-in a most convenient format.

The availability of monitoring, information results in a second distinction between data collection as

performed by conventional information processing systems and by the monitor: rather than being

constrained by insufficient data, the monitor must take dramatic measures to reduce the incoming flow of

data. For example, suppose that the monitor receives a value-time pair for each change in the program

counter. The monitor would have to run on a machine several orders of magnitude faster than the one

being monitored merely to store the information. However, if only routine timings were desired, the grain

of data should be much coarser. As another example, suppose that timings were desired only for a single

routine. Unless the data collection mechanism supports filtering,where only data satisfying specified

constraints is actually collected, the monitor will have to contend with data concerning all routines.

Extraneous data is very expensive to collect, since computing resources are required to collect it AO to
decide to discard it. Thus, data collection for monitoring involves careful selection of data, rather than

access and conversion to a more useful representation, as in conventional information processing

systems.

In order to discuss the data collection mechanisms within the operating system or application program,

it is necessary to characterize the environment in which the mechanism executes. The environment is

defined to be a collection of strongly typed objects, both passive (e.g. data structures) and active (e.g.

107

processes). Type managers export functions to be applied to objects of the type(s) supported by the

manager; all operations on an object are performed by the tyro manager supporting that type as

requested through well-defined interfaces (implying the existence of a type-checking mechanism). This

model thus identifies the operation being performed on the object by the performer (the type manager) as

a result of a request by an initiator. The user can create new types by defining the representation of the

object and specifying the operations which can be performed on objects of that type. The model applies

to all levels of granularity: in particular, a type manager may be implemented in hardware, firmware, or

software.

The model employed here has been used in several recent operating systems [27] and languages,

although the model can be used to conceptualize program behavior in any system). The model is

especially applicable to monitoring because it forces data structure state changes to be precisely

specified: any change to the representation of a data structure (i.e., object) must occur within a function of

the type manager as a result of performing a defined operation. Control flow can also be characterized in

this manner: all changes in the execution state of a process can be accounted for by examining the

sequence of operations performed by the process. Monitoring the model directly is difficult, due to the

large differences in granularity involved. For instance, monitoring the add operation performed on an

integer object by the hardware concerns significantly different issues than monitoring the file read

operation performed on a file object by the file system.

There are several properties related to the typing model which should be satisfied by the data collection

mechanism. The mechanism should support strong typing, in that typing violations are not necessary to

perform the data collection. The mechanism should rely as little as possible on cooperation by the type
managers, to allow additional data types and type managers to be monitored easily. The mechanism

should be efficient, especially when disabled. The mechanism should be very flexible, allowing the
monitor to specify exactly the information to be collected, thereby supporting filtering. And finally, the

mechanism must exhibit good software engineering.

One property not listed above is simplicity. Often the attributes of efficiency and flexibility interact with

simplicity; for instance, a mechanism supporting many modes of operation may be flexible but will

probably not be simple. Also, while restructuring an algorithm can make it both less complex and more

efficient, squeezing out the last bit of efficiency usually leads to more complex code.

Given that there are trade-offs, our approach is to place simplicity below the other properties in

importance. This strategy is acceptable given an intelligent monitor which can take a high-level, non-

procedural query and map it into a series of requests to the low level collection mechanism. Thus,

108

simplicity in the low level mechanism has only a second order effect on the complexity of the user

interface. As was argued in chapter 1, monitoring distributed systems is complex; this complexity will be

evident throughout the monitor, except at the level of the user interface. We assume that the higher levels

of the monitor can contend effectively with the complexity (and flexibility) presented by the data collection

mechanism.

7.2. The Mechanism

The data collection mechanism employed in the monitor is closely tied to the type model presented

earlier. An event is simply an occurrence the user is interested in. Each event occurs in the context of an

operation as defined in the type model. Information concerning an event is structured into an event

record, which is potentially of variable length and which contains both system and user-defined fields.

Event records are typed, with each event type being produced by a particular sensor, which determines

that an event has occurred, collects the relevant information concerning that event, and sends the

information to the remote monitor. Each sensor is found within a type manager, and is associated with an

operation (or set of operations) provided by the type manager. For example, the file system (a type

manager for the file object type) may have a ReadFile event sensor located in the code performing the

read operation. Other sensors, such as OpenFile, ExtendFile, PhysicalBlockRead, and ModifyProtection,

may also be present in the file system. Since state changes on a file object can only occur as the result of

operations performed by the file system, sensors within the file system can monitor these state changes for

all file objects.

Event records always contain the name of the type manager performing the operation (if the type

manager is itself an object), the event type, the name of the referenced object, and the name of the

initiator. Thus, all four components of a state change are recorded for later analysis.

Event records are stored in receptacles, which handle the enabling and synchronization of event

records. Receptacles are abstract objects in their own right, whose type manager is the resident monitor.

Events are enabled by the resident monitor by setting switches in the receptacle. Locks in the receptacle

arbitrate simultaneous access and modification of the switches by the resident monitor and the sensors.

There are several operations on receptacles supported by the resident monitor. To install a receptacle

in an object, the type manager for that object requests a receptacle from the resident monitor. The type

manager then places the receptacle in the object at a location determined by the type manager, which has

total control over the representation of the object. To enable (or disable) an event for an object, the

resident monitor presents the object to the appropriate type manager with a request for the receptacle

109

contained in the object. The resident monitor then modifies the appropriate switch in the receptacle.

Therefore, the minimum functionality a type manager must provide to support monitoring is the access

receptacle operation, which can be implemented quite easily , and the install receptacle operation, which

is also straightforward to implement.

Any sensor using the receptacle contained in an object must reside in the type manager for that object.

When such a sensor is encountered during the processing of a requested operation, the event

identification, object name, initiator name, performer name, and receptacle, as well as any additional

information provided by the sensor, is passed to the resident monitor, and a store event record operation

is performed by the resident monitor. First the appropriate enable switch in the receptacle is checked to

ensure that the event is enabled for this receptacle. If so, an event record in the proper format is then sent

to the remote monitor.

Placing the enable switches in the receptacle allows great flexibility in the enabling of events.

Receptacles are associated with passive objects and processes (active entities). A receptacle associated

with a passive object arbitrates the collection of monitoring information for that object. Enabling the file

read event for the receptacle associated with a particular file causes event record to be collected for file

reads only for this tile by any file system process. On the other hand, enabling the file read event for the

receptacle associated with a particular file system process causes event records to be collected for file

reads on any file performed only by this tile system process. An analogous selection applies to the initiator

of a file read operation. The event records can thus be filtered at a fine grain along three dimensions: by

object, performer, or initiator. Each sensor supports filtering of an event type in only one dimension.

However, several sensors (and event types) can be associated with an event (such as file read), each

designating a different receptacle to arbitrate event record generation by the sensor. Viewing the set of

pssible event records as a discrete four-dimensional space with axes consisting of event types, objects,

performers, and initiators, the event records generated by a particular sensor form a two-dimensional

ealdby a particular receptacle form a series of two-dimensional planes, all parallel yet intersecting the

event axis at different points6,

To achieve higher degrees of filtering (either a line or- a point in the event space) requires either

additional information be to stored in the receptacle (and additional processing to determine if the event is

CIA point in tsapace miay include several event records, each representing the same event, object, performer, and initiator, but
occuring at different timies. Of course, timre could be considered as yet another dimfension. visuahzng the event space is mr
difficult with such a change; the author finds four dimnensions hard enoughi

7~110

indeed enabled), or new receptacles representing component pairs (such as object- performer) or

component triples (such as object- performer- initiator) to be created and associated with the participating

objects. Both alternatives require super-linear space and/or time, and thus are unacceptable in an

environment supporting many objects.

The typing model applies to all levels of abstraction, from the hardware (with objects such as memory

locations, interrupt lines, device registers), the firmware, the language level (with objects such as

variables, semaphores, procedures), to the process level and the program level (with objects such as

servers, databases, users). The data collection mechanism can be used at all of these levels, presenting a

consistent interface to the rest of the monitor: event records containing the event type, object, performer,

and initiator, as well as other, event-specific, information. By associating receptacles with the objects

defined at a particular level of abstraction, the full filtering capabilities can also be realized. However, the

implementation will differ greatly from level to level, and there must be ways to transmit the information

gathered at the lower levels, especially at the hardware and firmware levels, to the higher levels where they

can be dealt with by the monitor.

7.3. Integrating Sampling and Tracing
In the preceeding discussion, the assumption was made that the event record is sensed anid

communicated to the remote monitor when the event occurs. Such event records are called traced event

records, since their generation is synchronous with the event, and thus with the operation whose object,

performer, and initiator is named in the event record.

Sampled event records, on the other hand, are generated at the request of the monitor, asynchronously

with the event they are concerned with. As an example, a sensor located in the scheduler of an operating

system could generate traced event records pertaining to context switching: process x started running at

time t,, process y started running at time t2, etc. Another sensor located in the scheduler could generate

sampled event records at the request of the monitor: process z is now running.

In the context of the type model, both sensors were executed as a result of an operation supported by

the scheduler; the former by the dispatch operation, the latter by the report current process operation.

The only distinction is the nature of the initiator- -either a random process in the system, or the resident

monitor. As far as the low level data collection mechanism is concerned, there is absolutely1 no difference

between sampling and tracing: the sensor, when encountered in the course of executing the operation,

checks the enable switch in the appropriate receptacle, and, if set, sends the event record to the remote

monitor. Also, the resident monitor must now have the ability to invoke operations in other type managers,

but the added complexity is where it should be: in the monitor rather than in the user's (i.e., type

manager's) code.

7.4. Interaction with the Remote Monitor
Since the remote monitor contains a large knowledge base concerning monitoring, it is important that it

be system independent. Hence, the remote monitor's view of the world is an abstraction supported by the

resident monitor interacting with a particular operating system with certain assumptions being made about

the event recordb b~eing generated. There is a tradeoff between strong assumptions, which are difficult to

support by the re~sident monitor, and weak assumptions, which make the derivation of high level

information from event records diff icult. This section is concerned with the environment as seen by the

remote monitor, and how this view is supported.

The format of the event record is one aspect to be standardized. Each event record is divided into a

fixed and a variable part. The fixed part is identical in format in all event records, and included the event

number, the (possibly nil) names of the initiator, performer, and object, and (possibly) a timestamp. The

variable part contains the domains of the event record, i.e., the additional information provided by the

sensor. Domains must be formatted in a defined external type (currently either a short integer, a long

integer, a boolean, a variable length character string, or a remote, name (see below)), with the sensor

mapping values in an internal format to an external type. Names and timestamps are much harder to

standardize; the rest of this section will describe our approach to these two issues in the context of data

collection.

7.4.1. Naming
There are several name spaces within the monitor for operating system objects; this section is

concerned with internal names (the operating system specific names), remote names (system

independent names which are processed by the remote monitor), and the mapping between these two

name spaces. Other chapters will deal with the remaining name spaces active in the monitor.

Internal names allow the resident monitor to gain access to the object in question. The internal name

for a file may be the disk address of its directory entry, or the mnode number in the case of Unix files [56];

the internal name for a process might be a memory address of a process control block, or an offset into the

process table. Object-based systems allow a consistent naming scheme to be used; the operating system

supports the addressing of all objects by using a name in a standard format. These names are usually

protected, so that processes must acquire names, rather than being allowed to arbitrarily generate them.

StarOS [27] and Medusa [51], the two operating systems the monitor was implemented on, are both

112

object-based systems; internal names are called capabilities and descriptors, respectively. A remote name

is an integer which can be mapped to an internal name, thereby allowing the actual object to be

referenced by the resident monitor.

It is helpful to examine briefly how names in these two name spaces are used by the monitor. When the

monitor starts, it knows no names. The user issues a query, and the remote monitor instructs the resident

monitor to find certain objects and to return the remote names of these objects. At that point, the remote

monitor sends some of these names back to the resident monitor, instructing it to enable certain events on

those objects. As these events subsequently occur, event records containing the remote names in their

fixed parts are sent to the remote monitor.

In order for this interaction to occur successfully, several invarients concerning remote names must be

guaranteed:

Uniqueness Remote names must be unique (one remote name for each object (internal name))
for event records to make any sense at all.

Injectivity Remote names must be unambiguous (one object for each remote name), for the
same reason.

Bidirectiona/ity The mapping must be bidirectional; in particular, we must be able to find the
object given a remote name.

Completeness When an event record is sent to the remote monitor, the remote name for the
object, the sensor, and the initiator must be available.

Litetime The mapping must allow operating system objects to be garbage collected.

Unfortunately, there is no mechanism for producing remote names which will satisfy all five invarients,

although different mechanisms violate different invarients. Assume we have a remote name for an object,

We can either

" not allow garbage collection, or

" allow garbage collection, and violate the bidirectionality invarient (if the object is deleted, we
cannot map the remote name to an internal name), or

* violate the injectivity invarient (map the old remote name onto a new object which has the
same internal name as the old, deleted object).

The second and third alternatives apply to operating systems that do not support a consistent, protected

internal name space. For example, the disk address of a file may be a perfectly valid name for the file while

it exists (assuming the directory is not reorganized). However, there is no guarantee that the file will not be

113

deleted and the entry replaced with that of another, newly created file.

The approach used here applies to object-based operating systems, and will support capability

addressing at the expense of a slightly corrupted bidirectional invarient: sometimes the mapping from the

remote name to the internal name will not work. To see how this is done, we must first explain the

mapping between internal and remote names.

Remote names will be of the form (epoch<minor name>. The <minor name> will be formed from the

internal name in a system-dependent fashion (this does not circumvent protection, since the internal name

may be read, but not written). Whenever an event record is constructed, the current (epoch> for each

(minor name> in the event record will be concatenated with the (minor name>, thereby forming a remote

nalrne.

The resident monitor will maintain a list of internal names it has collected from the event records it has

sent to the remote monitor. Whenever a remote name is sent to the resident monitor, the associated

internal name will be retrieved using the (minor name> field. Whenever an object is deleted, the (epoch>

for the (minor name> for that object be incremented, to ensure that the next object created with this

internal name will be mapped to a unique remote name. Note that interaction between the garbage

collector and the resident monitor is required to keep the <epoch> values consistent.

The mechanism outlined above satisfies all of the invarients except the garbage collection invarient. As

long as an internal name resides in the resident monitor, the object it refers to cannot be garbage

collected. Having many internal names in the resident monitor imposes an unnecessary processing and

memory burden on the system. Therefore the mechanism must allow internal names to be removed from

the resident monitor.

Stated simply, an internal name should be removed if it will never be needed again7 . Since is

impossible to predict when this will be the case, various approximations may be used:

" the object has an explicit destroy operation performed on it;

" there is only one internal name (the resident monitor's) referencing this object (and thus, the

object is nonexistent as far as the rest of the environment is concerned);

" the remote monitor will never send the remote name to the resident monitor in a request;

* it has been a long time since an event record has been generated;

7Put another way, all the invarients can be satisfied given an omniscient resident monitorl

I ~I,*

114

*the user has specified that this object is unimportant (or equivalently, has not specified that
thi obectisimportant);

" the object is of an unimportant type (or equivalently, is not of an important type);

0 the. remote monitor doesn't have a remote name for this object.

The frtalternative applies only to objects which have an explicit destroy operation on them which can be
monitored. The semantics of the destroy operation from the monitor's point of view is that, after the
operation has been performed, nothing interesting will ever happen to this object, i.e., no event records
containing a name for this object will ever be generated. The second alternative depends on a garbage
collector which can determine whether there is only one internal name extant; current garbage collectors
do not have this capability < is this true?7> The last four heuristics depend on psychological aspects, and
can be shown to be appropriate only after experimentation with many users over long periods of time.

7.4.2. Time
Time is a difficult problem when monitoring a distributed system. There must be a mapping from the

local time recorded in the event records to global time. Unfortunately, it is theoretically impossible to
exactly sychronize imprecise physical clocks over a geographical network with indeterministic
transmission times. A more practical constraint is keeping the overhead incurred in synchronizing the
local clocks accetably lo-w.

7.5. Sensor Specification
During the initial development of the low level event collection mechanism, it became apparent that

there were several procedural difficulties in the placement of sensors in the various operating systems.
One difficulty was the that the sensor routine (which stores the event records) was becoming quite
cumbersome. Ones design required twelve parameters for a typical sensor involving three domains! Since
the sensors were to be placed in critical portions of the operating system, there was little room for error in
the specification of these parameters. A second problem was the assignment of event numbers; an
incorrect event number in a sensor routine would result in the absence of event records of that type--a

situation that might be difficult to detect by the user interacting with the remote monitor. Two sensors with f
the same event number would cause havoc within the remote monitor. A third problem is maintaining
consistency between the remote monitor's view of the world and the world as it actually is. This is
especially true during the early development of the monitor, when the collection of sensors inside the
operating system, and the various attributes of those sensors, is changing frequently.

Finally, all these problems are exacerbated by the sheer number of sensors: we can easily envision

14

115

several hundred sensors in an operating system when it has been fully instrumented. The task of ensuring

that ali of these sensors, which are distributed across many source files, are correct and consistent, both

between each other and with the data structures within the remote monitor, is unmanageable if it remains

a manual one.

7.5.1. User-Defined Events
All of the issues mentioned above are also present when users are allowed to define events. Several,

including the event number assignment and communicating the sensors' specifications to the remote

monitor, become even more difficult in the presence of user-defined events.

In general, the less the user has to specify, the less that can go wrong with the specification. In a best

case senario, the user would specify the interesting events and indicate where the sensors for these

events were to be placed in the code. The sensor would be produced automatically from the

specifications, arnd would be as efficient as one crafted by hand. When the program was run, the event

types generated by these sensors would automatically be defined as relations with the full query language

available for manipulating events generated by the sensor. In addition, enabling and disabling of the

sensors in the user's program would be handled automatically as a side effect of evaluating queries

referencing these relations.

The solution, described in this section, is to create a database, called the sensor description file (SDF

containing information on the sensors defined in a given taskforce (a tasktorce is a collection of processes

cooperating to perform a particular task [281). The sensor description allows the above senario to be

realized in its entirety: placing sensors in a program involves merely creating a sensor description file

consisting of a few lines per event type and object type, adding the sensors to the program (one line per

sensor), and running a program (called the description file preprocessor (DFPre)) with the SOF as input.

All of the details are automatically taken care of by DFPre and by the monitor.

7.5.2. Syntax and Definitions
A sensor description file C .,.3.ists of a set of objects partitioned into classes. Each object is associated

with a set of class-dependent attributes. There can be one or more values for each attribute, and some

attributes can have objects as values. The syntax follows this description quite closely.

(description file> ::a < objects>

<objects> <:= object> I <object> (objects>

(object): "C' (class> (attribute list>")

116

(attribute list> (attribute> I (attribute> (attribute list>
(attribute> :: < "(" (attribute name> (attribute values> ")"

(attribute values> = (attribute value> I <attribute value> <attribute values>
(attribute value> :: <object> I (object name> I (atom> I (integer> I (string> I (list>

(class> (atom>
<objectname> = (atom>
<attributename> :: = (atom>

As an example, the following description file has one object with two attributes:

(event (name Iteration)
(timestamp true)

)

An SDF describes the sensors defined in a given taskforce. Since the operating system is itself a

taskforce (or collection of taskforces), one SDF specifies the sensors embedded in the operating system.

The Taskforce class includes attributes which hold for the task force as a whole. The ObjectType class

describes the objects which can be monitored by sensors defined in the SDF. The SensorProcess class

contains those attributes relevant to a particular process (i.e., a type manager). The Event class contains

most of the attributes, including the following:

Location the sensor process containing the sensor for this event;

Object the object type this event refers to;

Timestamp whether timestamps are to be included in the event record;

MinorType how the event is to be triggered;

SpaceTimeRatio the relative tradeoff between space and time efficiency in the sensor;

Domains the domains included in the event.

The Domain class includes attributes relating to each domain, particularly the type attribute.

7.5.3. The Description File Preprocesor

The description file preprocessor (DFPre) reads in a description, performs syntactic and semantic

checking, and outputs one or more files containing information derived from the input file. The position of

DFPre in the program development process is illustrated in figure 34.

The require files contain routine definitions to be used by the sensors. For example, each event results

I,

117

I I.

Fie smlrFl

Figu re 34: The position of DFPre in the program development process.

in the definition of a sensor routine. If the SDF contained the following event class (a fragment of an actual

SDF used to monitor a parallel partial differential equation (PDE) program):

(event (name Iteration)

(location PDESolver)
(timestamp true)
(domains (domain (name IterationNumber) l

(type Integer) Lk

)

then the routine IterationSensor, with one parameter (IterationNumber) would be defined. To place a

sensor for this event, the user would simply put the line

IterationSensor(Thi slterationNumber)

in the PDESolver code, where ThislterationNumber is a variable containing the current iteration number.

The require files contain virtually all the details necessary for the monitor to interact with this sensor.

The remote description is a specially-formated file containing the information in the SDF of use to the

remote monitor. This file is assembled and loaded with the user's program. When the resident monitor

encounters the taskforce, it ships the remote description to the remote monitor as a series of event

records. When this operation completes, the remote monitor is aware of the events, sensor processes,

and object types defined in the task force, and knows how to enable and disable the events.

i " " .S

118

This mechanism also works for the SDF(s) associated with the operating system. When the remote
monitor is started, it knows of no events, sensor processes, or object types. The resident monitor, when

started, first establishes contact with the remote monitor, then sends over the remote description, thereby

defining the events contained in the operating system.

In addition to rectifying the problems introduced on page 114, using SDFs has several other

advantages. Since DFPre has detailed information on the structure of each event, the code for that sensor

can be tailored precisely to that event. The spacetimeratio attribute is especially useful in this regard.

DFPre can also collection aggregate information concerning, for instance, all events located in a

particular process, in order to perform global optimization. The receptacles for each object type can also

be configured quite precisely. And finally, the information in the remote description can be used to

compensate for resources consumed during event collection, since the remote monitor will know what
processing was involved in storing each event record.

7.6. An Example
To illustrate the actions of the monitor, we will examine how a particular program running on Cm* is

monitored. The program solves Laplace's partial differential equation with given boundary conditions

(Dirichiet's problem) by the method of finite differences. The equation
au(XY) Xr2 u(,y)

is solved for points on an m by n rectangular grid, where only the values at the outer edges of the grid are
given. The solution is found iteratively. On each iteration, the new value of each element is set to the

arithmetic average of the values of its four adjacent neighbors.

Several processes and several processors work on the grid simultaneously. The grid is partitioned into
regions, with one process responsible for each region. The configuration is shown in figure 34. Note that

the solvers require access to adjacent regions to derive new values for points on the boundary of their

region.

There are many possible ways to synchronize the processes. The most efficient is the purely

asynchronous method. The processes are only synchronized at the beginning of the computation. This
means that, due to differences in the scheduling and in the data that each process is working on, some
processes may perform many more iterations than others.

The proposed experiment will investigate the relative synchrony of two of the processes operating on

adjacent regions. If one of the processes (call it Pl) gets behind the other process (P2), then the second

119

soller lleR",_ion]

Coordinaltor Shr R~o

Soer Rgo

Figure 35: Configuration of the PDE task force

process will be using older values for the points on the boundary, possibly slowing the convergence for

the entire grid. This experiment will focus on those periods of time when P1 gets significant'y behind 2

(i.e., more than one iteration).

One sensor is needed, a traced event sensor which generated an event record each time the solver

process begins a new iteration. The sensor descriptor file is shown in appendix PDESDF.

When the PDE program is loaded onto Cm*, the monitor is sent the information provided by the SDF.

Since the Iteration sensor has a minortype of sensortraced, the events generated by this sensor are

automatically converted into a primitive period relation by the monitor. Thus, when the remote monitor

receives the SDF describing the Iteration sensor, the primitive period Iteration is defined, with two

domains: Process, the name of the process generating the event record, and IterationNum, an integer

designating the iteration which has just begun. Derived relations can now be specified using the Iteration

relation, as will be described in detail in the next chapter.

7.7. Summary
This chapte- first presented a model for the environment the data collection mechanism was to execute

in, the type model, and then a mechanism which integrates well with this model. The occurrence of an

event is tied to four components- the operation, the object being operated on, the performer of the

operation, and the initiator of the operation. These components are recorded in the event record

generated by the sensor, along with additional information germane to the event. A new type of object, the

receptacle, was introduced to arbitrate the generation of event records, and great flexibility in filtering was

120

shown to be possible by associating the receptacles with the various entities participating in the event. We

demonstrated that, from the point of view of the sensors, there was absolutely no difference between

traced and sample event records, the distinction lying instead in the identity of the initiator of the

operation involving the sensor. Several issues involved with the interaction of the remote monitor, in

particular naming and time, were discussed, and techniques were developed for coping with the problems

inherent in those areas. Finally, the substantial software engineering issues involved in placing sensors

were dealt with quite successfully by having the user create a database, the SDF, which allowed the

monitor to aid in installing sensors by handling all of the details for the user.

At this point, it is possible to answer the query of chapter 2,

Problem 5: Is it possible to provide effective data collection mechanisms?

with a resounding Yes!:

Result 5: The system -dependent aspects of data collection can be embedded entirely in the
primitive relations. The user does not have to specify how the data is collected, or to worry
about the details of collecting, formatting, and processing the event records. Sensors are
efficient, and easy to install.

121

8. Simon: A Simple Monitor for StarOS
Richard Snodgrass

8.1. Introduction
This document specifies the user interface and overall design for an initial implementation of a

monitoring system for StarOS. The reader should read my thesis proposal, which gives an overview of the

relational approach to monitoring, before reading this paper.

8. 1. 1. Objectives
The objectives of this first implementation are three-fold: (a) to test my ideas on a significant set of

monitoring tasks; (b) to delimit the various issues involved in monitoring; and (c) to get experience with the

VAX and StarOS programming environments before attempting the design of a comprehensive system.

There were several limitations on the scope of this implementation in order to complete it in a

reasonable amount of time. Although the thesis is based on the monitor supporting the conceptual model

of a relational database, this implementation will concentrate on the more concrete issue of dynamic

incremental updating of temporal relations. The following issues will not be included in this

implementation:

" static relations; all computations will be done in "real-time"

" quel- like query language; a relational algebra will be used instead

" efficiency; no tuning of the relational operators will be done

" incomplete information, although a few aspects may be included if they are straight- forward

Chapter 8.5 examines how the implementation discussed below might be extended to incorporate the

above issues.

8.1.2. A Paradigm for the Implementor
Incremental update algorithms for temporal relations accept information in the form of "this relationship

between these entities became true at. time t1 and "the relationship subsequently became false at time

t2,and use this information plus stored information concerning the current state of the relation to derive

an updated relation. Relations thus evolve in time through tuples (rows of a relation) being added and

removed- These changes cause relations derived from a relation to acquire or lose tuples of their own, a

122

process continuing until the nt w information has been completely assimilated by the relations defined in

the system. It is thus natural tc~ concentrate on the flow of tuples, (both being added and being removed)

among the relations that are associated with each other through derivation expressions. Examining the

monitoring concepts of primitive relations, derived relations and relational operators from this viewpoint

results in rather different conceptualizations of these fundamental notions.

It is important to remember that two radically different paradigms are at work in this design. One

paradigm was introduced in my thesis proposal: the process of monitoring is profitably conceptualized by

the user as the accumulation of monitoring information in the form of relations which can then be

manipulated conveniently by the user. The paradigm introduced above is rather different: the process of

monitoring is profitably conceptualized by the designer (implementor) of the monitoring system as the

creation and execution of a network of nodes across which flows information collected by the monitor.

The former paradigm was discussed to some length in my thesis proposal; this document will investigate

the implications of the latter paradigm.

8.1 .3. Overall Design
The monitor will provide a collection of access nodes and generic operator nodes, which the user will

instantiate and link together in a tangled tree. Information in the form- of tuples (a collection of dlomains,

or, alternatively, a row of the relation) will flow out of the access nodes (which will communicate with the

access module(s) on Cm) and up through the tree. Operator nodes will take tuples from one or two lower

nodes and produce tuples which will be sent further up the tree. The entire hierarchy will be driven by

tuples originating in the access nodes (these tuples can represent either events which occurred or

samples which were automatically collected by the access module).

One might visualize this network by thinking of the nodes, both access and operator, as integrated

circuits (ICs), having zero or more input pins, one or more enable pins, one or more output pins, and a

data-out pin. Each pin represents a domain; a collection of input or output pins together with the enable

or data-out pins signify a tuple arriving at the device or being generated by the device. For those operator

ICs (nodes) requiring two tuple inputs, there would be two sets of input pins (with two enable pins). A

network is constructed by selecting the appropriate ICs and ensuring that every pin of each IC is

connected to at least one pin of another IC in a hierarchical fashion. Access l~s are somewhat unusual in

that they are connected to the outside world. When something changes in the outside world (the

"something" can be specified by the input pins) the access IC places a value on each of the output pins

and raises the data-out pin, thus generating an output tuple. This triggers the IC(s) connected to this IC,

causing them to place a tuple on their output pins and raise their data-out pins.

123

In the final design, the monitor will automatically construct the network given the high level queries

specified by the user. In the meantime, the user will be provided with commands to manipulate the

network (see chapter 8.4).

This network approach emphasizes the flow of information from the access module on Cm* to the

user's terminal. Relations are not explicitly represented in the system; instead a relation consists of all the

tuples which appear at the output pins of a particular IC (node) over the time period the node is in the

network (see section 8.5.2.1 for a way to support static relations using this framework). The instantaneous

snapshot of each relation is contained in the internal state of the node computing that relation. The

algorithms contained in the operator nodes, while performing standard relational operations such as join

and projection, are quite different from their database counterparts, since they are tuned for incremental

update of temporal relations. Since relations are represented only implicitly, a mechanism for viewing a

relation is vital. Among the collection of operator nodes is a display node, which merely displays the

tuples it has received on its input pins.

8.1.4. A Series of Implementations
The design is evolutionary, in that it consists of a series of implementations, each extending the

previous implementation and attacking a larger set of issues. The four implementations are listed below

(the terms will be discussed in later chapters):

*Step 1: a truly minimal system

o representation of tuples

o a few generic operator nodes

o debugging facilities, including pseudo-access nodes (which do not access StarOS but
instead are used for debugging)

o primitive constructors (create, link, unlink)

o control mechanisms for moving tuples around the network

* Step 2: a minimal StarOS monitor

o additional operator nodes

" communication with StarOS

o a few actual access nodes

" Step 3: add naming and improve the user interface

124

o defstruct

o full communication with StarOS

o a full complement of access nodes

*Step 4: round out the system (may never be done)

o uncertainty considerations

o display of multiple relations

I expect each step to take approximately two weeks.

The monitor will be written in Franz Lisp, running on the VAX, and the access modules will reside in a

single process written in Bliss/i 1 and run under StarOS. The two processes will communicate over the

Ethernet using the Pup protocol.

8.2. Access Nodes
The access nodes collect all the information accessible by the monitor. Each node conceptually takes

zero or more input domains (pins) specifying an entity and augments these with additional domains

describing that entity. Thus there is an output pin for every input pin, plus the output pins computed by the

access node. Each domain is tyned (unlike real I~s); see Appendix I for a discussion of the allowable

types and their representations. Each access node is associated with an accessing mechanism which

specifies how the information in the additional domains is to be computed. Access nodes can be

instantiated by the create operation (see section 8.4.1) enabling several copies to exist simultaneously in

the network.

The particular access nodes that are supported were chosen for several reasons. Naming is a basic

facility which should be provided early in the implementation, since the other access nodes depend on

names being associated with the entities involved in the relationships accessed by the nodes. Over half of

the access nodes support naming either directly or indirectly. Since processes are so prominent when

first monitoring a system, about one fourth of the access nodes involve processes. To support the

proposed synthetic workload generator, the TimeStamp access node was provided. And finally, several

access nodes provide general information concerning modules, processors, and capabilities. The access

nodes listed below allow a full range of issues concerning the collection of monitoring information to be

investigated.

The description of each access node consists of a signature (the node name and the domains), a

MLI

125

description of each domain, and the associated access mechanism for the node. Implicit in each

description is the time domain (an output pin) and the enable and data-out pins. The underlined domains

in the signature are both input and output pins (connected together inside the- node); the domains which

are not underlined are computed by the node and are thus only output pins.

8.2.1. Capalnfo (ThisCaga, Type, Cluster, Cm)

Domains:

ThisCapa CAPA, specifies the capability pointing to the object described by this relation

Type ENUMERATED: (BasicObject, KernelPO, UserPO, DeviceObject, ShadowObject,
DataMailbox, CapabilityMailbox, DirectoryObject, DequeObject, StackObject)

Cluster INTEGER, the cluster this object resides in

Cm INTEGER, the processor this object resides in

Access Mechanism:

object manager request 'The type domain is computed using Basic.DFS.

8.2.2. GetMpx (Nucleus, Mpx)

Domains:

Nucleus CAPA to thb nucleus module

Mpx CAPA to Mpx Basic status object

Access Mechanism:

Get the Mpx Basic status object via""

8.2.3. Library (index, Module)

Domains:

Index ENUMERATED index into StarOS Library

Module CAPA of module

I'1

Access Mechanism:

Convert the index into an integer (using ModLib.DFS) and access the StarOSLibrary capa.

8.2.4. ModuleAttributes (Module, Moduleld, Numbe rOf Functions,

Num be rOf Processes)

Domains:

Module CAPA to a module object

Moduleld INTEGER

NumberOfFunctions INTEGER

NumberOfProcesses INTEGER, the total number for this module

Access Mechanism:

Sample when needed, using ABlock.DFS. Access the NumberOf Processes -.sing

ProcessSetTotalCount in ProSet.DFS. Additional output domains will be added if necessary.

8.2.5. ModuleFunctions (Modulej, Function, Num berOf Processes,
InitStackSize)

Domains:

Module CAPA

Function: INTEGER

NumberOfProcesme
INTEGER, for this function

InitStackSize WTEGER

Access Mechanism:

Sampled when needed, using function attribute block of module, one for each function, using

ABlock.DFS. Access NumberOfProcesses using ProcessSetFunctionCount in ProSet.DFS. Additional

output domains will be added if needed.

127

8.2.6. ModulesLoaded (Userintert ace, Module, Name)

Domains:

Useri nterf ace CAPA to user interface process

Module CAPA

Name STRING name of Module

Access Mechanism:

Sampled when needed, using data structures found in the UlModuleRock capa (User~x335D2OJ); look

up string in $ModuleTaLle (UserCm.B1 1 [x335lD20]). **

8.2.7. ModuleProcs (Module, Function, Process)

Domains:

Module CAPA

Function INTEGER

Process CAPA

Access Mechanism:

Sampled when needed; grab first process of this function using ProcessSet (Modul.DFS, ProSet.DFS);

for each process (next - EnvBrotherProcess in Enviro.DFS) assign to process.

8.2.8. MpxStatus (Mp.~blkjct, CurrentProc)

Domains:

MpxObiect WA

CurrentProc CAPA

Access Mechanism:

Sample with high frequency, using ~

128

8.2.9. ProcessAttributes (Pr~ossi, IsActivated, RBRD, C131, Cluster, Cm,
FunctionNumber, Module)

Domains:

Process CAPA

IsActivated BOOLEAN

RBIRD ENUMERATED: (Ready, Blocked, Running, Done)

CPuI ENUMERATED: (Created, PartInitialized, Initialized)

Cluster INTEGER

Cm INTEGER

FunctionNumber INTEGER

Module CAPA

Access Mechanism:

Sample when needed, by accessing data and capa part of process object, using StatVe.DFS and

Enviro.DFS. Access Cluster and Cm using ~

8.2.10. ProcCapas (Procgess, Occupant)

Doamne:

Process CAPA

slot INTEGER

Occupant CAPA

Access Mechanism:

Sampled, using UENVNameSpace (in Enviro.DFS).

129

8.2.1 1. ProcessorMpx (M.&, Cluster, Cm)

Domains:

Mpx CAPA to Mpx Basic object

Cluster INTEGER

Cm INTEGER

Access Mechanism:

Sampled when needed, using *.

8.2.12. ProcessorUniverse (CgniguJstQ , Cluster, Cm, MemorySize, Status)

Domains:

Configurator CAPA to module

Cluster INTEGER

Cm INTEGER

MemorySize INTEGER•

Status ENUMERATED: (CmMissing, CmSuspect, PcDown, CmAvailable, BootCm)

Access Mechanism:

Sampled when needed, using Config.DFS.

8.2.13. TimeStamp (Type, SubType, Args)

Domains:

Type

SubType

Args

i

130

Access Mechanism:

Traced by receiving a message from the application.

8.2.14. Userld (Userlnterface, UserName)

Domains:

UserInterface CAPA to user interface process

UserName STRING

Access Mechanism:

Sample when needed, using ".

8.3. Generic Operator Nodes

In order to derive new relationships that are in a more useful form than the relationships expressed by

the access nodes, it is necessary to use operations that can be performed on the tuples from one or two

relations to compute a new relation. The system provides a collection of generic operator nodes which

can be instantiated by specifying the parameters associated with the node. In the descriptions that follow,

the parameters syntactically follow the name of the node. An integer is used to specify a domain (domains

are ordered, with the first domain being domain 1; the implicit time domain is always domain 0).

Parameters make operator nodes more convenient than ICs, since they can specify which input pins will

be used to compute the function and often which function is computed as well. The description of each

generic operator node consists of a signature (the node name, the instantiation parameters in brackets

and the output domains in parentheses) and an explanation of the computation performed by the node.

Some nodes append new output domains computed from existing domains; the rest map the input

domains to the output domains in some fashion. The names of the output domains not computed by the

node are taken from the input domains they are connected to. Note that all of these operations rely heavily

on the implicit time domain in their computations.

8.3.1. ApplyOp [Operation Domain 1 Domain 2] (Result); unary
Computes the domain Result whose value is the result of the specified operation on the specified

domains. The operation can be any Lisp function which can be applied to two arguments. Special

semantics are associated with arithmetic operations on temporal domains; see Appendix IV.

131

8.3.2. Constant [Constant] (Constant); no input tuples

Generates a constant on its Constant output pin. This constant can be of any type.

8.3.3. Count [MajorDomain MinorDomain] (Count); unary

Computes the count of the tuples having the same value for the MajorDomain after a projection on the

MajorDomain and MinorDomain has been done (i.e., two tuples with the same MajorDomain and

MinorDomain count only as one).

8.3.4. Display [Name I ... Namen]; unary

Maintains a display of the argument relation on the screen. The instantiation parameters are column

(domain) titles.

8.3.5. Duration (Duration); unary

Computes the TEMPORAL domain Duration whose value is the length of time (in milliseconds) the tuple

was valid.

8.3.6. Join [Predicate Domain, Domain 2J; binary

The output tuple contains all the domains of the two input tupI, ihich can contain a different number

of tuples. Each time a tuple enters the left input, it is concatenateo with all of the tuples that have entered

into the right input. The predicate is then applied to the corresponding domain1 coming from the left tuple

and domain 2 coming from the right tuple. If the predicate returns non-nil, the concatenated tuple is placed

on the output pins. An analogous process occurs each time a tuple enters the right input.

8.3.7. Projection [NumDomains Domain1 ... Domain N1moj; unary

The projection node is conceptually a parameterized cross-point domain switch, The values of a

particular subset of the domains in the input tuple are selected and places in the specified order on the

output pins. An example is

Projection [6 4 3]

which takes the third and fourth input pins and connects them to the second and first output pins,

respectively. Input pins 1, 2, 5, and 6 get connected to output pins 3, 4, 5, and 6 respectively. Note that

the first NumOomain input pins are connected to a like number of output pins and that the information

from the rest of the input pins is discarded.

132

8.3.8. Selection [Predicate Domain1 Domain2]; unary

If the predicate returns non-nil, then the input pins are copied to the output pins.

8.3.9. SelectConstant [Predicate Domain Constant]; unary

Similar to the Selection operator, except that the third argument is a constant rather than a domain

index.

8.3.10. Sum (MajorDomain MinorDomain] (Sum); unary
Similar to Count, except the sum of the values in MinorDomain (which must be an INTEGER or TEMPORAL

domain) is computed, rather than the number of distinct values.

8.4. Node Interconnection
In previous chapters the access nodes and generic operator nodes supported by the system were

described. The access nodes provide all the information the monitor knows about the application running

on Cm*; the operator nodes are used to convert this information into a form more useful to the user. This

is done by combining the nodes into a tangled tree with the links corresponding to paths over which

individual tuples flow.

The analogy between nodes and integrated circuits breaks down somewhat when one examines how

the nodes are interconnected. Ideally (?) one would like to specify all connections between pins in the

network. The difficulty lies in the fact that the pins represent domains of the relation, yet the

implementation deals only with tuptes, which are collections of domains. This is natural, since we are still

dealing with relations. A second diffic ty with the analogy is that each instantiated node has a

unspecified number of input pins which are connected directly to an equal number of output pins (unlike

standard ICs!). The exact number of pins is determined when the node is connected into the network. The

reason is that a node should take as arguments relations containing an arbitrary number of domains,

rather than having, say, a generic operator node called Duration1 which computes the duration of all one

domain relations, another node called Duration2, etc. One way tt deal with this problem is to include the

number of domains as an instantiation parameter. Instead, the manner in which t-' pins are connected is

constrained. The set of output pins of each device is grouped together into either a single tuple or a left

and right tuple (the nodes can have 0, 1, or 2 input tuples). The link command is provided to connect the

output tuple of one device to an input tuple of another device. The projection operator node, which maps

a number of input domains (the input tuple) into a (possibly smaller) number of output domains (the output

tuple), provides some of the flexibility that the link command removes.

- 'I

133

8.4.1. Primitive Constructors
There are three primitive constructors. The first creates an instantiation of an access or operator node.

The second creates a link between two nodes, and the third destroys an existing link. Given the

predefined nodes and these constructors, it is possible to specify arbitrarily complex computations on

monitoring data.

8.4.1.1. (Create name newname (arg, ... arg))
This operation creates an instantiation of the node name with the specified instantiation parameters and

associates the name newname with it. For example,

(Create 'ApplyOp 'Add12 '(+ 1 2))

creates the node Add 12, which will add the values of the first two domains and append the result as an

additional domain of the tuple. Instantiation parameters are only allowed for operator nodes. The

instantiated node is assigned to newname and the create operation returns nil. Note that the number of

pins has not yet been determined (although some restrictions may have been placed on them; for

instance, Add 12 has at least two input and three output pins).

8.4.1.2. (Link fromnode onode)
This operation connects the output tuple of the node fromnode to an input tuple of tonode, which must

have at least one input tuple. For binary operator nodes, use

(Link fromnode tonode left)

or
(Link fromnode tonode right)

The link operation must be able to determine how many Output pins there are on fromnode (how this is

done will be seen in a moment). It then connects all the output pins of fromnode (the output tuple) to the

selected input pins (the input tuple) of tonode. At this time, the number of output pins on tonode can be

determined by adding the number of domains computed by tonode (which appear after the output

domains connected directly to the input domains) to the number of input pins coming from the output

tuple of fromnode. Note that this requirement forces the network to be a fully connected dag, or tangled

tree. This property is satisfied by all networks which can be derived from relational queries.

Once the number of input and output pins has been determined, the link operation merely links them

together in the order in which they occur (output pin 1 of fromnode is connected to input pin 1 of tonode,

etc.)

134

8.4.1.3. (Unlink f romnode tonode)
if these nodes have been connected using the link command, then this link is removed. Otherwise, this

operation has no effect.

8.4.2. Two Examples
To ilustrate the link operation, suppose that

(create C Constant (1))
(create A Apply~p (+ 1 1))
(create L Library)

had been executed. The instantiated node C has at least one output domain (called Constant); A has at

least one input domain and two outpu' domains (one called Result); and L has at least one input domain

and at least two output domains (one called Module). All nodes have one input tuple and one output tuple.

After executing

(link C A)

C has no input domains and one output dlomain (called Constant); A has one input domain called

Constant and two output domains, Constant and Result. Proceeding further,
(create P Projection (2 2 1))
(link A P)
(link P L)

P simply interchanges the Constant and Result domains, so that the Result domain can be used as an

Index to L. L has two input domains, Result and Constant, and three output domains, Result, Constant,

and Module. Note that the input domain specified in the signature for Library was assumed by the Link

command to be the first input domain.

As a more extended example, suppose we wanted a list of all the processes owned by any given user.

Informally, this list can be derived by getting the user interface module out of the StarOS library, going

down the user interface processes accessible from this module until we find the user's user interface

process, getting all the modules loaded by the user, and then getting all the processes which are invoked

functions of those modules (whew!!). This process is illustrated below:

135

Constant[Userlnterface]

Library (Index. Module)

ModuleProcs (Module, Function, Process)

Userld (UserInterface, UserName)

Select[UserName - RS4I] (UserInterface, UserName)

ModulesLoaded (UserInterface, Module, Name)

ModuleProcs (Module. Function, Process)I I
I I

First a few comments on the notation will be given. Instantiation parameters are enclosed in square

brackets; output domains are enclosed in parentheses. The vertical lines between domains indicate the

connection of those domains; the rest are eliminated by projection nodes, which are not shown. Vertical

lines between nodes indicate all of the output domains of the upper node are connected to input domains

of the lower node. To express this network in terms of the operations given above, the projection nodes

and the connections must be made explicit:

Ji

136

(Create UI Constant (Userlnterface)) :Userlnterface is ENUMERATED
(Create Libl Library (UserInterface)) ;get the user interface module
(Link U1 Libi)
(Create Proji Projection (1 2)) ;the module domain
(Link Libl Proj1)
(Create MP1 ModuleProcs) ;get the user interface procs
(Link Proji MPI)
(Create Proj2 Projection (1 3)) ;the process domain
(Link MP1 Proj2)
(Create Useri UserID) ;get the user ids
(Link Proj2 User1)
(Create SCI SelectConstant (EQ 2 RS41)) ;UserName - RS41
(Link User1 SC1) find correct interface proc
(Create Proj3 Projection (1 1)) ;user interface process domain
(Link SCI Proj3)
(Create ML1 ModulesLoaded) ;get the modules loaded by
(Link Proj3 MLI) ;this user
(Create Proj4 Projection (1 2)) ;the modules domain
(Link MLI ProJ4)
(Create MP2 ModuleProcs) ;get the processes of these
(Link Proj4 MPZ) ;modules
(Create Proj5 Projection (Z 1 3)) ;the process and
(Link MP2 Proj5) ;module domains
(Create 0l Display (Modules Processes)) ;display them
(Link Proj6 01)

There are several problems with this notation. First, it is quite verbose. Although there are only seven
"useful" nodes (as illustrated before), constructing the network requires twenty-five speparate operations.

Second, it necessitates inventing names for the instantiated nodes (one way to get around this would be to

have the create operation automatically invent a name for the newly instantiated node). Third, it ignores

the names of the input and output pins, instead relying on the implicit ordering enforced by the link

operation and the use of integer constants for domain indices. Finally, there is no way to parameterize the

entire subnetwork, or to remove it conveniently. In short, the notation is at too low a level. Although it

provides the abstraction from pins to collections of pins (tuples), it constructs an network rather than

specifying operators that take relations as arguments. The next section discusses a notation which solves

most of these problems.

8.4.3. Defining Structures
The deistruct operation translates a higher-level description of a network structure to iternal form

which an extended create operation then transforms into a list of: create and link operations. It makes

certain assumptions concerning the form of the network to be constructed; and thus is less general than

the create and link operations themselves. The defstruct operation is intended to fit between a high level

calculus-based query language such as Quel and the low level create and link operations just discussed.

The transformation from a query to a defstruct specification should be relatively straightforward; the same

137

can be said for the transformation performed by defstruct. Thus the defstruct syntax is designed to appear

as much as possible to be relational operators (in the form of generic operator nodes) operating on

relations (in the form of output tuples of nodes at the top of trees within the network) to produce relations.

The overall syntax of the operation is
(defstruct newname (param1 ... paramn) (domain, ... domaina)

source)

The defstruct operation creates a structure which is similar to a generic operator node with no inputs in

that it is instantiated with a create operation with zero or more instantiation parameters. The list of

domains specifies the names of the output pins for the structure. The source is an expression which

states where the information that is routed to the output pins comes from. It has the following syntax:

(node (param, ... param,) (domain, ... domatn)
leftsource rightsource)

The node specifies an access or generic operator node (not one that has been created). The list of

domains specifies which domains will be provided by this source. Conceptually, the domains provided by

leftsource (and rightsource if the node is binary) are linked to the node (after it has been created) as input

tuples in the order they are specified in leftsource and rightsource. The names of these domains are also

given to the names of the output domains to which they are connected. These output pins are connected

to a projection node which selects the domains named in the domain list. Thus each source specification

is translated into an operator or access node-projection node pair, with generated names for the

instantiated components. To illustrate, the following structure

(defstruct UserProcess (UName) (UName ModuleName Process)
(ModuleProcs (Module Process)

(ModulesLoaded (Mods)
((Select (EQ Id Name)) (Module)

(UserID (Module Id)
(ModuleProcs (Procs)

(Library (Module)
Constant (UName)J

is identical to the one specified earlier when

(create UserProcess (RS41))

is executed.

Note that the syntax for source bears a strong resemblance to the defstruct syntax. The primary

difference is that the arg i in defstruct are the names (i.e., the formals) of instantiation parameters which

are used within the structure being defined, whereas the arg i in source are the values (i.e., the actuals) of

the instantiation parameters which are provided to the node. This correspondence allows the source to be

the name of a structure (which appears in an earlier defstruct) followed by the values of the instantiation

138

parameters and the names of the domains (nothing should follow the list of domains when a structure

instantiation is used as a source). Using a structure as a source in another structure implies either that

defstruct be able to treat this structure as a special case or that the link operation be able to handle

structures. The latter change will be made, with the added provision of allowing unlink to undo the

changes caused by the corresponding link operation.

8.5. Conclusion
This report has outlined an evolutionary (as opposed to revolutionary?!) approach to implementing a

system supporting incremental updating of temporal relations.

8.5.1. Abstraction
The facilities provided by the monitor has been presented starting at a very low level of abstraction and

moving up to a middle level of abstraction: The initial conceptual view was one of ICs (nodes) connected

in a network. Each IC had a number of input, enable, and output pins, and one enable pin. This view

allowed the primitive nodes provided by the monitor to be defined. After the various generic operator and

access nodes were listed, a set of three primitive constructors were described which perceived the

network from a more abstract level. These constructors viewed a node in the network as an instantiated

generic or access node (with bound instantiation parameters) which had zero, one or two input tuples and

one output tuple. Two operations were described which connected and disconnected nodes together at

the tuple level. At that point a third level of abstraction, that of structures, was introduced. A structure is a

portion of a network with certain constraints on the manner in which the components of that structure

could be connected. Structures could be instantiated similarly to generic operator nodes. The defstruct

operation viewed a node in the network as an operator which took one or two input tuples consisting of

named domains and which provided an output tuple also consisting of named domains, with a convention

of connecting domains of similar names. The final level, that of relational queries, is discussed below.

8.5.2. Extensions
To be relevant to the thesis, this approach must allow extension to a general monitoring system

supporting the relational model. This chapter will illustrate a few ways that the system can be extended

into a general system. Once the initial system has been implemented, these ideas can be investigated

further.

'I

139

8.5.2.1. Static Relations
Static relations can be stored by providing a Store operator node which would store incoming tuples in

an external relational database in a relations specified by one of its instantiation parameters. Queries on

stored relations could be handled with a Retrieve access node which would generate the tuples of a

specified relation in chronological order.

8.5.2.2. Calculus-based Query Languages
The mapping of Quel statements into algebraic operator trees is well-understood, although temporal

operators may introduce some complexity. The defstruct operation provides an example of compiling an

algebraic specification into a network. It should be possible to extend this mechanism to handle Quel-like

statements.

8.5.2.3. Efficiency

One of the motivations for an initial implementation is to determine how much of a problem efficiency

will be. If it is indeed a problem, there are several possible areas for improvement. The queries presented

to defstruct are in an appropriate format for transformations to improve efficiency. Such transformations

sometimes provide exponential speed-ups in execution time. The algorithms within the operator nodes is

another such area.

8.5.2.4. Incomplete Information

This topic was discussed briefly in my thesis proposal. The approach was to divide periods into portions
which are known and portions which are possibly invalid. Each portion would be represented by a tuple

with an additional implicit domain (probably a boolean value) specifying how definite the tuple was. The

access nodes would initialize this domain and the operator nodes would use the domain in their update

algorithms.

8.5.3. Unresolved Issues

There are many additional issues which must be resolved during the implementation of this design. A

few of the more important ones are listed below:

Duplicate tuples Should they be removed by each node, or should there be a special
operator node whose only job it is to remove them? Should this node be
automatically linked in by the defstruct operation? Which operator and
access nodes are sensitive to duplicate tuples?

Monitoring errors Should there also be compensation links between various access nodes
which describe the impact one access mechanism has on the validity of the
information returned by a second access mechanism?

. r ." ,. = , , ,, ,a t = - --

140

Triggering Some nodes (such as ApplyOp) should trigger on the leading edge of a
tuple (i.e., when it becomes true), other nodes (such as Duration) should
trigger on the trailing edge (when it becomes false), and a third set of nodes
(such as Join) should trigger on both f dges. How is this variation handled?

Initialization What sorts of activity should take place when a node is created or linked
into the network? For instance, operator nodes must initialize their internal
data structures and access nodes should establish contact with the access
module on Cm ° .

Naming within defstruct How are access and operator node domain names known to defstruct? How
does defstruct handle domains which may or may not be input domains
(such as the Function domain of ModuleProcs)? How should constants be
handled?

Type checking Should the link and defstruct operations do type checking on the pins that
are connected?.

Sampling How does the monitor determine when to start sampling and the frequency
to sample?

!I

141

Appendix IV
Representation Issues

IV. 1. Tuples
Tuples are represented by a list of domains. Each domain has a type-dependent structure. The

domains are referenced by index: domain 0 is the implicit time domain, and domain 1 through domain n

are the explicit domains. The time domain is a list containing the begin time and the end time using a

global clock.

IV.2. Domain Types

mRepresentation

INTEGER Integer

BOOLEAN Either the atom True or the atom Nil

CAPA Integer index into access module's capa list (256 entries)

ENUMERATED Symbolic value created by access n6de

STRING Lisp string

TEMPORAL List containing the slope and the intercept (initial value); the range is time

An example of an ENUMERATED domain is the type domain for the Capalnfo access node, which can have

the symbolic value BasicObject, CapabilityMailbox, etc., each of which is a symbolic value within Lisp. An

example of a TEMPORAL domain is the duration domain of the Duration operator node, which consists

simply of a slope equal to 1 and an intercept equal to 0.

IV.3. Arithmetic Operations on Temporal Domains

OeainResult

Temporal [+/-] Constant intercept' : = intercept [+ /-] constant

Constant [+1-] Temporal intercept': constant [+ /.] intercept

Temporal [+ /.1 Temporal intercept' : = intercept1 [+/-] intercept2;
slope': = slope1 + I/] slope2

I,

142

Temporal Constant intercept' : = intercept * constant;
slope': = slope ° constant

Constant ° Temporal intercept' = constant ° intercept;

slope': = constant * slope

Temporal / Constant slope': = slope / constant

Tk ,nporal / Temporal intercept' : = slope1 / slope2 ;
slope : = 0 (i.e., no longer a temporal domain)

all other operations illegal

.i

143

9. A General Monitoring Mechanism
Richard Snodgrass

9.1. Introduction
This document describes a very general monitoring mechanism for multiprocessors which was

designed by Bob Chansler, Ivor Durham, Anita Jones, Zary Segall, and Richard Snodgrass. The

fundamental approach was to design a single mechanism which could handle the majority of monitoring

tasks yet be relatively simple to implement.

The intent of this document is to review the basic design, enumerate the various issues which must be

considered when implementing the mechanism and then present a system- independent specification of a

minimal (stage 1) monitoring mechanism. A brief discussion of the implementations of the stage 1

mechanism under two operating systems, StarOS and Medusa, completes the document.

The mechanism, like the operating systems it will be implemented on initially, is object-oriented.

Monitoring actions are associated with the objects supported by the operating system and with the active

entities which perform operations on these objects. The mechanism can be configured along several

dime, sions, allowing the user to specify quite precisely the aspects (s)he is interested in. In addition to

being very flexible, the mechanism presented here is simple and efficient. The processing of monitoring

data is divided into two portions, one synchronous with the occurrences the user is monitoring, and one

asynchronous, with some coordination between the two. The synchronous portion is designed to be as

efficient as possible, with the asynchronous portion being less critical in a multiprocessor environment.

This mechanism borrows heavily from the Hydra Kernel Tracer, which turned out to be very useful for

monitoring both the operation system and user processes.

9.2. The Basic Design
The monitoring mechanism developed here records information concerning events, which are simply

occurrences the user is interested in. Given this general definition of events, the mechanism can be used

to support both tracing and sampling. There are several components to the mechanism:

* events, which are actions performed by an initiator IQ an object

" event types, which partition events into useful categories

" sensors, which detect that an event has occurred

144

" a storage mechanism for event information

" a receptacle for holding event information

" a notification mechanism for performing auxiliary actions when event information is stored
" a sensor enable mechanism for turning on and off the sensing of events]

" a storage enable mechanism for turning on and off the storage of event information

" a notification enable mechanism

" a mapping between sensors and event types

" a mapping between event types, initiators, and receptacles

" a mapping between event types, objects, and receptacles

* a compensation mechanism to aid in calculating the effect the monitoring action had on the
data in the collected information

In order to achieve maximum generality, it is useful to consider each of these components as a separate

entity. This approach will be taken here, with the eventual implementation enforcing certain assumptions

concerning these components.

9.2.1. EventSets
For each type of object to be monitored, there is an eventset of event types concerning objects of that

type. The following is a list of possible eventsets:

" Process EventSet p
* Task Force EventSet

* Multiplexor EventSet

" Memory Management Table EventSet

" Image Slice EventSet

" Module EventSet

Each eventset contains several sources of monitoring information for the event types contained in the

set. The events and information sources for the Process EventSet include:

* Assign event, scheduler

145

* Block event - multiplexor

" Create event - process creator

" Preempt event- multiplexor

" Wakeup event- multiplexor

9.2.2. Receptacles
Receptacles are used to store the information associated with an event. Each Receptacle contains

" internal state, and

" a circular queue of event records.

Intuitively, an eventset is a collection of sources of monitoring information concerning the object type

the eventset is associated with, and a receptacle is a container for this information. Receptacles contain

an enable boolean in their internal state which specifies whether event records are to be stored in the

receptacle.

The implementation determines the grain of events which can be monitcred. Clearly, if the monitoring

mechanism is to not greatly perturb the system, the grain of events to be monitored must be significantly

larger than the combined storage and notification mechanisms.

9.2.3. Event Records

Event records contain

* event information,

* an optional timestamp, and

" optional monitoring error compensation information.

9.2.4. The InitiateMonito ring Operation
To associate an event type, an object, and a receptacle, the

InitlteMonltoring (Object, EventType, Receptacle)

operation is provided by all eventsets. There is also an analogous TerminateMonitoring operation. As an

example which will be referred to throughout this document, the

InitlateMonitorlng (AProcess, Block. ThlsReceptacle)

operation provided by the ProcessEventSet connects ThisReceptacle to the Block event concerning

146

AProcess. When AProcess blocks, an event record will be stored in ThisReceptacle. In this case, the

initiator of the event is the multiplexor and the sensor that detected the event is contained there. The

sensor of another event concerning processes could be located in a user process which sampled a

process and then generated an event containing the information just gathered. If this event is designated a

query event, then the operation

InitiateMonitoring (SecondProcess, Query, AnotherReceptacle)

could also be performed. When the user process makes a query on SecondProcess, the information is

recorded in AnotherReceptacle.

When an event is generated on a particular object (say the block event on AProcess), the event

mechanism first determines whether the sensor detecting the event is enabled (see section 9.2.5). If not,

then the event is considered to have not been detected (there is a philosophical issue as to whether the

event has actually been detected anyway). If the sensor is enabled, the event has definitely been detected,

and the object is checked to ensure that there is a receptacle associated with that object and that event. If

so, the receptacle is checked to see if it is enabled. No event records are stored in a disabled receptacle.

After the information is stored, a notification as specified in the receptacle is performed.

9.2.5. Sensors
A sensor is simply a mechanism for determining that an event has occurred, collecting the relevant

information concerning that events and storing that information into the appropriate receptacle. Thus,

every sensor generates event records for events of a particular event type. A sensor can be enabled or

disabled just as a receptacle can. However, if a sensor is disabled, no information will ever be stored in

receptacles associated with that sensor. Thus, if the block event sensor is disabled, no information will be

stored in ThisReceptacle regardless of whether ThisReceptacle is enabled.

By enabling or disabling a given receptacle, the monitoring data can be filtered on an object-by-object

basis. A similar, though orthogonal, filtering occurs when sensors are enabled and disabled. For

instance, disabling ThisReceptacle causes data concerning the blocking of AProcess (on aIl processors)

to be filtered out. Disabling the block sensor within a particular multiplexor causes only blocks on that

processor (concerning all processes) to be filtered out.

Each eventset supports the sensor-event association and the object-event type-receptacle association.

Thus it may be possible for an eventset to automatically enable of disable various sensors as receptacles

were added or removed from objects. From a different point of view, the eventset could reject

InitiateMonitoring requests if the sensors are already disabled. The eventset might also reject all

147

InitiateMonitorinq operations on the Block event if the current system does not contain a sensor for this

event. An arbitrary amount of intelligence could be embedded in the eventset's InitiateMonitoring and

TerminateMoritoring operations. However, the minimal functionality would be easy to implement.

9.2.6. Notification
The notification mechanism performs auxiliary actions when an event record is stored in a receptacle.

These actions notify other entities (esp. the monitoring process(es)) that the event record has been stored

or that a condition (such a queue overflow in the receptacle) occurred. This mechanism is necessitated by

the separation of the sensors (and the associated storage mechanism), the receptacles where the event

records are stored, and the monitoring process, which removes the event records from the receptacle for

further analysis. The decoupling has several advantages, including efficiency of the monitoring portion

which is synchronous with the event (e.g., the storage mechanism) and the filtering capabilities mentioned

in section 9.2.5. The primary disadvantage is that the occurrence of the event can be separated from the

detection of the event by the monitor by an arbitrarily long period of time, depending on how often the

monitoring process examines each receptacle.

The notification mechanism is included to inform the monitoring process that either an event record has

been stored or that a particular condition concerning the state of the receptacle has been satisfied. This

mechanism should transfer minimal information, thus requiring the monitoring process to examine the

receptacle for a more detailed view of the condition causing the notification.

9.2.7. Summary
A number of actions must be taken in order to collect monitoring information. First, one or more

receptacles must be created, and the notification mechanism must be configured for each receptacle.

Then the InitiateMonitoring operation is performed for each object-event type pair for which monitoring is

desired. At this point, the receptacles start filling up with event records. It is the responsibility of the

monitoring process to ensure that the event records are removed from each receptacle before the

information is overwritten. The notification mechanism discussed in the next chapter is designed to aid in

achieving this loose synchronization.

9.3. The Basic Implementation
There are two levels to the implementation of this mechanism. The lower level (to be specified shortly)

consists of the receptacle and receptacleset data types, and the ReceptacleStore operation. The upper

level consists of the eventsets and the InitiateMonitoring and TerminateMonitoring operations.

'.

148

9.3.1. ReceptacleSets
The mechanism allows a re.eptacle to be associated with a particular event type and a particular object.

This association is implemented using the receptacleset data type, which is simply a set of receptacles.

Each object to be monitored is associated with a receptacleset. Receptaclesets can be associated with

any object which has associated operations written in software, such as

" processes

* system tables

" abstract data objects

" StarOS modules

" task forces

" file control blocks

If the storage and notification mechanisms are implemented in software (as is envisioned), then the

objects which cannot be associated with receptaclesets are the ones supported by firmware:

* StarOS mailboxes

* StarOS carriers

o StarOS basic objects

* StarOS deques

o Medusa pipes

9 Medusa descriptor lists

o Medusa pages

o directories

Note that some operations on these object types are implemented in software, so that it may still be useful

to associate receptaclesets with instances of them.

9.3.2. The ReceptacleStore Operation

Information is stored in a receptacle by the ReceptacleStore operation which takes the following

parameters:

o a receptacleset

149

" a sensor identifier

" event information

The ReceptacleStore operation first ensures that the sensor is enabled, and if so, that the particular

receptacle is enabled. If these con(itions are satisfied, then the event information is stored in the

receptacle and an optional notfication is performed.

This mechanism is amenable to both tracing and sampling. Tracing is accomplished by embedding

ReceptacleStore operations in the code for the modules of the system. Whenever this code is executed,

the event would be recorded in the relevant receptacle.

Sampling is accomplished by handing over the object to be sampled to a process designed to sample

the indicated object type. Periodically this process will examine the object and then execute one or more

ReceptacleStore operations.

9.4. Implementation Issues

Given this framework, there are still many design issues to be resolved. The remainder of this document

will outline the various options implied by these issues.

9.4.1. Internal State of a Receptacle

The internal state of a receptacle includes one or more of the following components:

* Start pointer -- refers to the beginning of the circular ueue (where event records are removed
by the monitoring process)

" end pointer -. refers to the end of the circular queue (where event records are added)

" cycle counter -- the number of times the end pointer has been reset to the top of the queue
buffer

" cumulative counter -- only necessary if event records are of variable length

* notification mailbox

" notification receptacle

" operation register

" semaphore -- for coordinating access to the receptacle

" free record limit -- used in one of the notification predicates

'It

150

9.4.2. Notification
There are two aspects to the notification issue: how and when. Possible notification predicates are

" when an event record is stored in the receptacle;

" when the number of free records in the queue goes below the free record limit (includes
buffer-full and overwrite conditions as special cases);

" when the counter reaches a specified value;

" when the cycle counter is incremented; or

" when some other condition on the internal state is satisfied.

Possible notification actions are

* sending a data message to the notification mailbox indicating the current cycle count, the
offset into the queue, and perhaps a imestamp;

* sending a capability message to the notification mailbox containing the receptacle which the
notification concerns;

* setting or clearing enable bits in the operation register; or

* generating another event record on the notification receptacle.

9.4.3. Operation Register
The operation register specifies the action to be taken when a ReceptacleStore operation is executed.

This register is a collection of switches which cant be set either by a ReceptacleSwitch operation or by a

notification. These switches enable

" the store operation itself,

" various notification actions,

* various notification predicates,

" various combinations of notification predicates and actions

* timestamps in event records,

" timestamps in notifications, and/or

* other optional operations.

151

9.4.4. Restrictions

Certain restrictions may be necessary in order to efficiently implement this monitoring mechanism.

Possible restrictions which came up in discussions were

* Receptacles cannot be shared by several receptaclesets

* Receptaclesets cannot be shared by several objects

* the notification receptacle must be in the same receptacleset

* the reserved capability slot in processes must contain a receptacleset capability, even if all the
receptacles in that receptacleset are disabled

9.4.5. Compensation
Information may be stored in the sensor or the receptacle which would aid in calculating the effect the

monitoring action had on the data in the collected event records. This information may include

" an event generation counter

" a ReceptacleStore fail counter

" an overhead estimation counter

It is difficult to design a compensation mechanism without a specific implementation in mind.

9.5. The Stage 1 Specification
The stage 1 monitoring mechanism is designed to provide the minimal functionality yet still allow a

significant portion of the events to be monitored.

9.5.1. Receptacles
The mechanism consists of the receptacleset and receptacle data types and the ReceptacleStore

operation. Each receptacle contains

9 internal state, and

* a circular queue of event records.

Event records are fixed length records containing

" event information and

* an optional timestamp.

The internal state of a receptacle contains the following components:

152

" start pointer

" end pointer

* cycle counter

" notification destination

" operation register

" free record limit

" event record size

The operation register contains

" the store operation enable switch

" a notification predicate indicator

" a notification action indicator

* a switch enabling timestamps in event record

9.5.2. Notification
The notification predicates which are supported are

" an event record is stored in a receptacle

* the number of free records (as indicated by the difference between the end and start pointers)
falls below the free record limit

The supported notification actions are

" setting an indicator which the monitoring process(es) can test very quickly

" clearing the store enable bit in the operation register

All the restrictions listed in section 9.4.4 are acceptable.

9.5.3. The ReceptacleStore Operation
The ReceptacleStore operation will take the following parameters:

" a receptacleset,

* a sensor identifier, and

S....... j4

153

* event information.

The number of words of event information is assumed to be equal to the event record size contained in the

receptacle. The basic algorithm for the operation is

Is the receptacleset capability nil?
Yes - exit

Index into the receptacleset to get the receptacle
Is the receptacle nil?

Yes - exit
Is the receptacle enabled for stores?

No - exit
Are timestamps in event records enabled?

Yes - collect timestamp
Store event record
Is notification predicate satisfied?

Yes - perform notification

Sensors and events are separate entities. The StoreReceptacle operation is be handed a sensor

identifier, which it maps into an index into a receptacleset. The sensor is disabled by disassociating the

sensor identification from an event. The eventsets are responsible for maintaining the mapping from

sensors to events. This mapping is modified by the InitiateMonitoring and TerminateMonitoring

operations.

9.6. The StarOS Implementation of Stage I
The StarOS group has agreed to implement the stage 1 mechanism in its entirety. This chapter will give

an overview of the correspondence between the stage 1 specification and the StarOS implementation of

that specification.

9.6.1. ReceptacleSets
The following objects will have a predefined receptacleset capability slot:

" processes

" modules

" task forces

Receptacles per se will not exist; instead, the receptacles will be merged into the receptacleset. The

operation registers will form an array of operation registers, and the individual queues will be combined

into a single queue. This arrangement has at least three advantages:

* the proliferation of small objects (receptacles) will be avoided;

154

" internal fragmentation due to the presence of many small buffers will be eliminated; and

" the monitoring process will be able to manage the various queues more efficiently because
they will be larger and fewer in number.

The primary disadvantages are

" receptacles cannot be shared by several receptaclesets, and

" the event type must be stored in the event record.

9.6.2. The ReceptacleStore Operation
The ReceptacleStore operation will be implemented as a procedure call in software. Hence the grain of

events which can be monitored is at least an order of magnitude greater than a procedure call.

9.7. The Medusa Implementation of Stage I
There are two possible Medusa implementations which do not involve extensive Kmap modifications.

Both implementations merge receptacles into the receptacleset.

The first approach splits the receptacleset into a data structure which is stored in the object being

monitored and a conventional Medusa pipe. The pipe serves as the circular buffer and the notification

mechanism. The data structure consists of a capability to the pipe and the event operation registers. The

monitoring process is responsible for retrieving the event records from the pipe.

The second approach involves creating a new Medusa object which is equivalent to a page object

except that

" there could be several capabilities to the same object, residing in different task forces if
necessary, and

" there would be less than 2K words of data, due to the presence of back pointers within the
object.

Using this new object type, an implementation similar to that of StarOS could be done.

The advantages of the first approach are

* no new object types are necessary, hence no microcode modifications are involved;

" variable length event records incur no additional overhead;

" the synchronous portion of the ReceptacleStore operation is very fast; and

L....

155

* the circular buffer (i.e., the pipe) can be shared.

The advantages of the second approach are V

* it is more consistent with the StarOS implementation;

* it allows sharing of receptaclesets;

* recent information is retained in preference to old information if the circular buffer is full; and

* flow control (using the free record limit) is feasible.

157

10. Description File Specifications
Richard Snodgrass

10.1. Introduction
During the initial development of the low level event collection mechanism for the Cm* monitoring

system, it became apparent that there were several procedural difficulties in the placement of sensors in

the StarOS and Medusa operating systems. One difficulty was the that the Sensor macro (which stores the

event records) was becoming quite cumbersome. One design required twelve parameters for a typical

sensor involving three domains! Since the sensors were to be placed in critical portions of the operating

system, there was little room for error in the specification of these parameters A second problem was the

assignment of event numbers; an incorrect event number in a Sensor macro would result in the absence of

event records of that type--a situation that might be difficult to detect by the user interacting with SIMON.

Two sensors with the same event number would cause havoc within SIMON. A third problem is maintaining

consistency between SIMON'S view of the world and the world as it actually is. This is especially true during

the early development of the monitor, when the collection of sensors inside the operating system, and the

various attributes of those sensors, is changing frequently.

Finally, all these problems are exacerbated by the sheer number of sensors: I can easily envision several

hundred sensors in both StarOS and Medusa when the monitoring system has been fully developed. The

task of ensuring that all of these sensors, which are distributed among many source files, are correct and

consistent, both within each other and with SIMON, is unmanageable if it remains a manual one.

The solution, described in this document, is to create a database, called the sensor description fie

(SOF, which contains information on the sensors defined in a given tasktorce. As work progressed on

designing the sensor description file, it became apparent that the syntax (as well as the programs

processing that syntax) were general enough so that databases could be designed to contain information

other than that related to the sensors. In fact, the description files will be used to communicate all static

information to SIMON from other programming environment tools.

This document details the syntax and semantics of the various description files. Each chapter describes

a particular use and format for the description file; a table can be found at the end of the chapter

summarizing the file format. Both user-level and implementation -level information is included, usually In

separate sections. This chapter provides an overview of the syntax followed by all the description files,

and describes the processing of these files.

Pww=Nc3 M az u xL~mIO? 11Lm

158

10.1.1. Syntax and Definitions
A description file consists of a set of objects partitioned into classes. Each object is associated with a

set of class-dependent attributes. There can be one or more values for each attribute, and some attributes

can have objebts as values. To describe a particular format, one must specify the object types, the

attributes for each type, and the allowable values for each attribute.

The syntax follows the above description quite closely:

<description file> :: = <objects>

<objects> :: = <object> I <object> <objects>
<object> :: = (<class> <attribute list>)

<attribute list> :: = <attribute> I <attribute> <attribute list>
<attribute> :: = (<attribute name> <attribute values>)

<attribute values> :: = <attribute value> I <attribute value> <attribute values>
<attribute value> :: = <object> I <object name> I <atom> I <integer> I <string> I (list>

<class> :: = <atom>
<objectname> :: = <atom>
<attributename>..-"- <atom>

<integer> can be positive or negative; <atom> are converted to uppercase.

As an example, the following description file has one object with two attributes:

(oneclas (name abc)
(objectattribute 3)

10.1.2. The Description File Preprocessor
The description file preprocessor (DFPRE) reads in a description, performs syntax and semantic

checking, and outputs one or more files containing information derived from the input file. The syntax is

specified in another description file called a description format file (FDF) (see chapter 10.3 for details).

The semantics is contained in a function inside DFPRE which must be provided for each format. This

function performs various checks on the information in the file and derives new information to be placed in

one of the output files.

Once a description file has been processed, the information can then be output in a number of ways,

depending on the requirements of the format. All formats can be output as a Simon description. This file

159

is a PDP- 11 assembly language file which is assembled and placed in a taskforce to be loaded onto Cm.

Once the information is in the taskforce in this special format, it can be easily and efficiently sent over to

SIMON by the resident monitor (see section 10.3.7).

Other object files may be produced by DFPRE. These files are dependent on the individual formats and

will be described in the relevant chapter.

10.2. Sensor Description File (SDF)
There are actually two sensor description file formats, one for StarOS and one for Medusa. However,

the formats are similar, so they will be discussed together. All unqualified statements apply to both

Medusa and StarOS. The Name attribute is required for all objects. The Documentation (or Doc)

attribute allows comments to be given. Note that parentheses must be matched in all attributes, including

Documentation and Doc.

10.2.1. TaskForce
An SDF describes the sensors defined in a given taskforce. Since StarOS is itself a taskforce, an SDF

describes all the sensors within the operating system. Medusa requires several SDF's, one for each utility.

There are only a few user-supplied attributes for TaskForces. The SimonFileName specifies the name

of the file where DFPRE will place the Simon description (see section 10.3.7). The Version attribute is for

documentation purposes.

10.2.2. ObjectType
This class describes the objects which can be monitored by sensors defined in this SDF. Objects

monitored in StarOS must reserve one word and one capability slot for monitoring information; their

locations are defined by WordOffset and RSOffset. Medusa objects must reserve 17 words starting at

the field named by Exte rnSensOffset. V

10.2.3. SensorProcess
The Inline attribute specifies whether inline code for sensors is to be used at all. This attribute, if false,

overrides the SpaceTimeRatio attribute in events. The RequireFileName specifies where the sensor [
macro definitions are to be placed. The other attributes apply on for StarOS SDFs. The FunctlonName

and ModuleName attributes will be used in conjunction with the naming description file (see chapter

NDF); until that interface is working the FunctionNumber will be used. If the process contains any

160

internal events (see below), then the RSOffset and WordOffset attributes must be specified,

analogously to ObjectTypes. The ClockPage attribute specifies the address, if any, the clock may be

found.

10.2.4. Event
The Location attribute identifies the sensorprocess containing the sensor for this event. The Object

attribute specifies the objecttype this event refers to. The Timestamp attribute specifies whether

timestamps are to be included in the event record. Note that SIMON uses the timestamp to identify the

sensor and the object referred to in the event record. The WaitTime attribute specifies the number of

microseconds to wait for space to be made available in the receptacle for an event record. A WaitTime of

0 indicates no waiting; a WaitTime of -1 indicates infinite waiting.

The SpaceTimeRatio attribute indicates the relative tradeoff desired between space and time

efficiency in the sensor. A high spacetimeratio (near 100) specifies a sensor which optimizes space as

much as possible; analogously, a low spacetimeratio (near 0) optimizes the time efficiency. The InLine

attribute is equivalent to a low spacetimeratio if true and a high spacetimeratio otherwise.

Several attributes relate to event enabling. If the AssumeEnabled attribute is true, then the event is

always enabled. This attribute is useful for message- and invocation-sampled events (see below). If the

CheckOneTime attribute is true, then the onetime bit will be queried after the event record is stored to

determine whether to turn off the enable bit. If the checkonetime attribute is false or not specified, then the

AssumeOneTime attribute must be specified. If true, then the enable bit will always be turned off after

the event record is stored; otherwise, the enable bit will aot be touched.

The MinorType attribute specifies the event type. There are five types of events: object-traced,

sensor-traced, receptacle-sampled , message-sampled, and invocation-sampled. The event types

designated by () are Internal (a generated attribute, see below), indicating that the receptacleset

contained in the sensorprocess, rather than in the object, is to be used.

A traced event record is written when the event occurs. The traced events are enabled by setting the

appropriate bits in the appropriate receptacleset. An object-traced event uses the receptacleset

associated with the object to determine the various aspects of the event record: whether it is to be stored

at all, where it is to be stored, etc. A sensor-traced event uses the receptacleset associated with the

sensor for this information. When a sensor-traced event occurs (an example is the reading of a file), the

process sensing the event (in this case, a filesystem process) will first check the store enable bit in its

internal receptacleset. If this bit is set, then the process will store the event record. As far as the

I ! ,
i

161

implementor of the process is concerned, the only change in the source code will be a single Sensor

macro call. When an object-traced event occurs (the reading of a file might be both a sensor and an

object-traced event), the same sequence is executed, except that the object's (in this case, the file control

block object) receptacleset is used.

A sampled event record is written at the request of SIMON. Sampled events require more cooperation

from the implementor of the process sensing the event. Sensors for receptacle-sampled events still refer

to the enable bits located in the sensor process's internal receptacleset. However, these bits are not

checked when an operation is performed; instead, the process must periodically query these bits. If the bit

for an receptacle-sampled event is set, then the sensor process must generate the event records at that

time. In the usual case, the onetime bit will also be set, resulting in the clearing of the enable bit after the

event records are generated. An example of a receptacle-sampled event is an event in the process which

generates an event record specifying the number ,. free words in a data structure within the process. To

determine this value, SIMON tells the resident monitor to enable this particular event; the event record is

generated the next time the enable bit is queried by the process (hopefully soon after the bit is set), and

the enable bit is cleared so that no more event records will be generated.

The last two types of events, message and invocation-sampled events, requires even more cooperation.

Whenever SIMON desires an event record concerning a particular object (and/or process or module), a

SAMPLE command will be sent to the resident monitor, which will either send a message containing the

object to the indicatod process, which must then generate the requested event record(s), or perform a

function invocation on the indicated module, which must also generate the requested event record(s). In

either case, it is the implementors responsibility to see that the message or invocation is received and the

event records are produced.

Although the minortype, onetime, and assumeonetime attributes are specified independently, most of

the time the values will follow these patterns:

(minortype object-trace) (checkonetime t)

(minortype sensor-trace) (checkonetime t)

(minortype receptacle-sample) (checkonetime nil) (assumeonetime t)

(minortype message-sample) (checkonetime nil) (assumeonetime nil)

(minortype invocation-sample) (checkonetime nil) (assumeonetime nil)

The DeclareObject attribute causes the sensor to declare the object to the resident monitor so that

162

the resident monitor can later associate a receptacleset with this object. This attribute will probably be set

for create (sensor-traced) or receptacle-sampled events, and are relevant only for StarOS sensors. The

Domains attribute lists the domains included in this event.

10.2.5. Domain
Since domains have attributes of their own, they are treated as separate objects. Domains are ordered

within events. The Type attribute specifies the format of the domain within the event record.

10.2.6. Generated Attributes
DFPRE generates attributes to be used by SIMON and to be used in producing require files. The Index

attribute for domains indicates the relative ordering of the domains within the event, with the first domain

having an index of 1. The EnableBitStatus attribute is derived from the AssumeEnabled,

AssumeOneTime, and CheckOneTim'e attributes. The Internal attribute is derived from the

MinorType attribute. The Enableindex attribute specifies the bit position in the receptacleset

associated with this event, and is also used as the event number.

Several attributes are generated for both object types and sensor processes, describing aggregates

over the events defined for those objects. The number of enable bits in the external receptacleset for an

object type (and the internal receptacleset for a sensor process) is recorded in the NumEnableBits

attribute. The Events attribute contains all the events associated with the object type or sensor process.

If one of the events associated with a sensorprocess is internal, then the Inte rnalEvent attribute is true.

The data and time the SDF was processed by OFPRE is recorded in the Minute, Hour, Day, Month, and

Year attributes; the name of the SDF appears in the SDFileName attribute.

10.2.7. Require Files
DFPRE produces several files from an SDF: (1) a Simon description to be loaded with the taskforce and

sent to SIMON by the resident monitor; (2) a require file containing definitions for each sensorprocess (in

the case of a StarOS SDF) or the taskforce (for a Medusa SDF); and (3) a require file for each object type.

The goal is to imbed much of the detail of the event collection mechanism in these require files, so that few

modifications are necessary to the source code of the processes containing the sensors.

t 163

10.2.7.1. Sensor Process Require Files
The sensor process require file has the following components (Name is replaced by the name of the

sensor process):

" MakelnternaIRS macro (if internal events are defined for this process- -expands to a call to the
MakeReceptacleSet macro);

" require statements for the receptacleset definitions and for each object type referenced by the
process;

* Namesensor macro (for each event located in this sensor process- -expands to a call to the
Sensor macro);

" NumberOfEvents definition-:

" MaxRecordSize definition.

10.2.7.2. Object Type Require Files
The require file for each object type contains the following components (Name is replaced by the name

of the object type):

* MakeNameRS macro (expands to a call to the MakeReceptacleSet macro);

* NumberOfNameEvents definition.

10.2.8. Summary

la Attribute Value 9 N 10 Description

Class Doc Anything
Class Documentation
Class Name Atom 0,R

Domain Index Integer G,O

Domain MaxSize Integer11

81f Class, then attribute applies to all classes.

9Either a defined type (anything, atom, boolean, or integer), a class name, or a special type, whose values are listed in a footnote.

10G = generated by oFPRE, M = only for Medusa, 0 = output to Simon De'-cription, R = Required, S = only for StarOS, 1 If in a
Medusa SDF, then specified in the Taskforce, but generated for the sensorprocess. X=will eventually be removed, ?=not
documented.

11Only if the Type is string.

II1[' "" - " , = = . , ,,t~ rb,1 r I]

164

Domain Type DomainType 12O,R

Event AssumeEnabled Boolean
Event AssumeOneTime Boolean
Event CheckOnetime Boolean
Event Declare~bject Boolean S
Event Domains Domain
Event EnableBitStatus Atom' 3 G
Event Enableindex Integer G,O
Event IndexCap Integer G
Event Inline Boolean
Event Internal Boolean G,O
Event Location SensorProcess R
Event MinorType MType" 4,R

Event Object ObjectType 0
Event SpaceTimeRatio Integer

Event StartCap Integer G

Event WaitTime Integer

ObjectType Events Event G
ObjectType ExternSensOffset Atom MX
ObjectType MaxEventSize IntegerG,
ObjectType MinEventSize Integer- ?
ObjectType NumEnableBits Integer G
ObjectType RequireFileName Atom S
ObjectType RSSIot Anything 15 S,R,X
ObjectType WordOffset 'Anything S,R,X

SensorProcess ClockPage Anything S
SensorProcess Events Event G
SensorProcess FunctionName Atom OS
SensorProcess FunctionNumber Integer OS
SensorProcess Inline Boolean T
SensorProcess InternalEvent Boolean G
SensorProcess MaxEventSize Integer G,?
SensorProcess MinEventSize IntegerT,
SensorProcess ModuleName Atom OS
SensorProcess NumEnableBits Integer G
SensorProcess Objects ObjectType G
SensorProcess RequireFileName Atom T

12Oeof Doubleinteger, Integer, or Wting.

13 n of Check~neime, ClearStoreEnable, OontTouChStoreEnable, AasumnEnabled.

14 n of ObjectTraced. SensorTraced, ReceptacleSampled. MessageSamPled. or InvocationSamled.

15UauaNy an Integer or an atom.

165

SensorProcess RSSIot Anything R,S,X

TaskForce Day Integer G,O
TaskForce Hour Integer G,O
TaskForce Inline Boolean M
TaskForce SimonFileName Atom
TaskForce MinEventSize Integer M,?
TaskForce Minute Integer G,O
TaskForce Month Integer G,O
TaskForce PipeName Atom M
TaskForce RequireFileName Atom M
TaskForce SDFileName Atom G,O
TaskForce SystemName Atom G,O,S,?
TaskForce Version Integer 0
TaskForce Year Integer G,O

10.3. Format Description File (FDF)

Each description file format is associated with a set of classes, a set of attributes for each class, and a

set of values for each attribute. For instance, the event class can be used in a sensor description file, the

TimeStamp attribute is defined for events, and the values True and False are acceptable for the

Timestamp attribute. Rather than imbedding this format-specific information in DFPRE, it is placed in a file

called a format description file (FDF). Using a FDF has several advantages: the various classes, attributes,

and values for a format can be modified easily by the format designer, the structure of DFPRE is less

complex, one version of DFPRE works for several formats, and the same routines in DFPRE which process

the input description file (the SDF, etc.) can be used to initially process the format description file, since

the FDF is in the same syntax as the other description files.

The classes in the FDF specify the tasks to be performed when reading in the input file (the FieldTypes,

Input, and Default classes), the processing of the input file (the General class), and the generation of the

Simon description (the Output class). Each of these classes will be described here. This chapter also

contains a description of the internal structure of DFPRE. Perhaps the best way to understand this material

is to study several existing FDF's to see how the various classes are used.

10.3.1. FieldTypes

The allowed values for an attribute are divided into (potentially overlapping) fieldtypes. The predefined

fieldtypes are

boolean True, T, False, F

anything A general list except nil

9 !

166

Lisp Predicate The most common values are fixp (integers) and atom (names).

The field types class allows the format designer to define new fieldtypes for a particular format. The

attributes of the field types class are the names of the fieldtypes, and the values are the values that

belonging to that fieldtype. For instance, the specification

(fieldtypes (atype 1 2 3 a b c)
(anothertype one two three a)

)

includes two field types (atype and anothertype); the former allows six possible values and the latter, only

four. These field types can later be used as values of attributes of the Input class.

10.3.2. Input
This class specifies the typechecking to be done on the file being read in. Each object in this class

describes the valid attributes for a class in the input file and the values of these attributes indicate the

fieldtype of the value of the attribute when given in the input file. For instance, the specification

(input (specifies oneclass)
(objectattribute fixp)
(asecondattribute atom)

)

describes a class called oneclass, which has two attributes. The first attribute, objectattribute, can have

integer values. The other attribute, called asecondattribute, can have names as values. i

10.3.3. Default
The default class defines values to be assumed if none are specified by the user. The syntax is similar to

the input class:

(default (specifies event)
(timestamp f)

)r
Note: This class is not implemented.

10.3.4. General
This class controls the processing of input files. The successive steps are:

" read in the appropriate FDF, with type-checking disabled;

" read in the input file, performing type checking as specified in the input class;

167

" add defaults if necessary as specified in the default class;

" perform any format-specific processing (by calling the ProcNodeFunction);

* ask for commands and generate output files (by calling the CommandFunction).

The two functions must be defined in DFPRE (see the source code for DFPRE for examples of

ProcNodeFunction and CommandFunction). The FileDefault attribute applies to the input file; the

RequireFileDefault applies to any require file generated by DFPRE.

10.3.5. Output

In the usual case, only a subset of the attributes are sent to SIMON via the Simon description. The output

class specifies which attributes are to be placed in the Simon description, and the format of the values for

the attributes.

10.3.6. Internal Representation

As the input file is read in, an internal representation of the objects defined in the file is constructed.

This representation is based on frames, which are attached as properties to atoms. Frames are composed

of slots, which are further composed of facets, which have values (note the intentional correspondence

with objects, classes, attributes, and values). An atom is generated for each object defined in the input file.

10.3.7. Simon Description Format

The Simon description file consists of a list of triples, each containing two integers and either a third

integer or a character string. The first integer indicates the attribute, the second, the object, and the third

element is the value of this attribute for this object. Since attributes are represented by integers, there

must be some way to associate an attribute with an integer. This is done using four "meta" attributes:

DefineNodeAttribute (value 1), for attributes having objects as values; DefineLitAttribute(2), for attributes

having either integers or strings as values; DefineAAttribute (3), for attributes having other attributes as

values, and DefineNode (4), to define classes. The example given earlier.

(oneclass (name abc)
(objectattribute 3)

would be described by these triples:

(4 {DefineNode), 5, "OneClass") oneclass - 5
(5 {oneclass}, 1, "abc") object # 1
(2 {DefineLitAttribute), 6, "objectattribute") objectattribute - 6
(6 {objectattribute), 1, 3)

168

In this way, SIMON needs only to know the values for the four meta- attributes; the names of the classes

and attributes are send along with the rest of the description.

10.3.8. Summary

QmAttribute18 Value NQLPZ 7 Descrigtion

Default Attribute Default Value
Default Required Attribute?
Default Specifies Class

FieldTypes Type Al/owed Values

General CommandFunction Function Name
General FileDefault Filespec' 8

General ProcNodeFunction Function Name
General RecluireFileDefault Filespec

Input Attribute Type
Input Specifies Class

Output Attribute OutputType'9

Output Specifies Class

As the input file is read in, the following attributes are generated within oF-:

N9 Nam 2M EAWt VaIM222 N~QIMM Descriotion

All Nodes Node Class class
All Nodes Node ID Integer 0
All Nodes Node IsNode True
All Nodes Node Name Atom 0

is f i italics, then substitute a defined attribute or type.

17not documented.

1 A filespec relers toa (partial orfull)nametfora file, and may beatlist or astring. If alist, it may be inone of two formats: ((dev
dir) name ext) or (name ext dev dir). The usual value for this attribute.s" *.dfs".

19Oeof Attribute, Boolean, Class, Integer, or String

20The frame name is identical to the name of the node.

I 1f a class, Ownt substitute a defined claw.

22ANode is a generated atom assoiated with a frame of fth same name.

23 Output to Simon.

169 1

Name Class Node Node

ThisFile Attributes Attribute Integer
ThisFile Class Attribute Value
ThisFile General C/ass Node
ThisFile General NodeL-ist Node
ThisFile General NumAttributes Integer
ThisFile General ObjFileName Atom
ThisFile General SDFileName Atom

On the SIMON side, the structure is somewhat different, emphasizing access of an attribute quickly given

a Descr node 24:

fD-d- NIMe Facet YAW qgIje Descriotion
Descr AttributeL-ist AttributeType27 Attribute
Descr Attributes AttributelD Attribute
Descr Class Name NodelD
Descr class Class NameNode
Descr Class Node/V Class
Descr General Complete Timestamp
Descr General DescrType DescrType
Descr General NumAttributes Integer
Descr General ObjectName ObjectName name of description object
Descr General TaskForce TFNode
Descr Name Node/V Atom
Descr NodeL-ist Node/V Node

General Accountant BufferSize Integer
General Accountant TraceToggle Integer
General DescrType ObjectName DescrNode name of task force
General Derived RelationName NodeName C update node name
General DescNodes ObjectName DescrNode name of description object
General Domains RelationName DomainName C
General EventClass MaxValue Integer
General EventClass ObjectName Integer name of a task force
General Num~fClass; Class Integer
General 06 RMName ObjectName name of resident monitor
General 06 TFName ObjectName name of task force

24N in Italics, substitute a value of the indicated type. A NodeID is a small integer, as is an AttributelD. Nodes and Attibutes we
assigne ID's starting at I in each Doscr. An ObiectName is a (large) integer. A DescrType is one of Hardware, Naming, or Sensor.

2Ifin Italics, then substitute a genrated name. The f rame name is identical to the node name.

25C Only in monitor core, *Not implemented.

27One of aattrlbutes fltattributes, nodeattributea, nodes.

170

General TaskForces TFNodes TFNode
General TupleVariables TVName RelationNamne C

General Obetae UserName ObjectName Second Obi is a
component of first Obi

General Primitive RelationName NodeName update node name [

Mod General Name At 3m

Mod General ObjectName ObjectName

Mod Process FunctionNumber ObiectName

Name Node Class Attribute Value

Name Node Class Name Atom

Name Node Class UniquelD Integer uses General - NumOfClass

Name Node Node Class Class

Name Node Node Descr DescrNode

Name Node Node ID NodelD)

Query General TupleVariables TVName C

Query General Relations Relation Name C

TF Components Name ObjectName

TF Components ModulesNode ModuleNode
TF Description DescrType DescrNode

TF General EventClass Integer
TF General Name Atom

TF General ObjectName ObjectName

TF General Processes ObjectName C

171

11. The Cm* I Simon Protocol Specification
P. T.Highnam and Richard Snodgrass

11.1. Introduction
This document details in a fairly system independent way the relationship between the resident monitors

on Cm* and the master monitoring process SIMON on a VAX. The resident monitors are STARMON under the

StarOS operating system, and MEDIC under the Medusa operating system, communicating with SIMON

under the Unix operating system via the EtherNet.

We describe the EtherNet communication protocol, the packet formats, the command and data record

formats, and the initialisation and naming scheme. The details of the sensors, the internal design of SIMON,

and the system-dependent aspects of STARMON and MEDIC are described in separate documents and in

section 11.7.1.

11.2. EtherNet protocol
The conversation is conducted using PUPs (PARC universal packets) and a protocol similar to that of

EFTP (EtherNet file transfer protocol) simulating a transmission from SIMON to the resident monitor. The

PUP types sent to the resident monitor will be EFTPData with the complete communication terminated by

an EFTPEnd packet from SIMON. The resident monitor will always be sending EFTPAck packets

containing monitoring data as an acknowledgement for each EFTPData packet. Nothing will be sent by

the resident monitor until requested -. this applies to every transmission. Thus, SIMON always serves as the

master, and the resident monitor as the slave in the protocol. One should note that the PUP types are

totally arbitrary and were chosen so that the implementors could look up the values independently.

Each EFTPData packet will contain a sequence number, which starts at 0 and is incremented by one

with each successful packet transmission. The EFTPAck packet will contains the sequence number of

the EFTPData packet it is acknowledging. The resident monitor will resend the last EFTPAck packet if it

gets a packet with an invalid sequence number. Similarly, SIMON will retransmit an EFTPData packet if an

invalid EFTPAck packet is received or if a proper acknowledgement is not received in a reasonable

amount of time. This, SIMON and the resident monitor should be out of synch by no more that one packet.

Each packet will be used to carry multiple commands from SIMON or multiple data records from the

resident monitor (see chapter 11.4). Note that the data part of a packet may range between 0 and 266

(decimal) words in size (each word is two bytes, or 16 bits). The Pup encapsulation uses another 11

172

words.

There is no notion of time in the resident monitor; any time-outs will be generated solely by SIMON. When

the resident monitor receives an EFTPEnd packet, it should return to its initial state (see chapter 11.6).

1 1.3. Object Identification

A single 21-bit entity (called the object-id) will identify every object known to the resident monitor. The

format of this word is defined solely by the internal considerations of the monitor. If the object associated

with the object-id is deleted, the resident monitor is required to send a NEW NAME data record (see section

11.4.3) containing a timestamp which indicates that this object-id, if used again in an event record which is

stamped with a time after that in the corresponding NEW NAME data record, will refer to a different object

(see section 11.7.1 for details on how this data record is handled).

More comments on the interpretation of the object-id by the resident monitor, in particular the means

chosen to deal with object creation and deletion, can be found in the STARMON and MEDIC documents. V

11.4. Packet Formats

11.4.1. Parameter Sizes

The following lists the sizes for the various parameter types used in this chapter:

la Size n byam zn bit

Command 1 8
Flag I
object-id 3 21
entry-id 1 8
event-number 1 7
Data Record type 1 8
Data Record length 1 8
Timestamp 4 32
Entry value 4 32

11.4.2. Command Format (Simon to Cm*)

4 Command 44- Flag(s) -X- Long Parameter -X- Short Parameter -

byte byte 4 bytes 2 bytes

Each command packet will contain several commands. The last command in the sequence will be an

p4

173L

END command. The commands are shown below; with each is (a) a numeric code (intended to be used to
identify the corresponding command in the implementation), and (b) parameters. If there is a single END

command then it is in response to a LAST RECORD record from the resident monitor with a parameter value
greater than zero (indicating that there are further data records waiting to be sent). The list below
summarizes the commands. The parameters are in the order of Long Parameter, Short Parameter, Flag(s).

ADJUST OBJECT[1) object-id bit-position bit-value
Alter the specified enable-bit of the specified object. The bit-position specifies the
word offset (top 12 bits) and the bit within the word (bottom 4 bits). No response
required.

CHECKPOINT[2 1 -object-type

This is a checkup on a particular object-type. This will tell SIMON that there no events
on objects of this type occurring before, but unaccounted for at, a particular time after
this command was received. The CHECK data record specifies this time as a timestamp.

If a CHECKPOINT command arrives before an earlier one has been completely

processed, it will be ignored.

READ ENTRY[3]- entry-id
There are some things wired into the resident monitor, for example, how many pipes
are in use, where to find the current time, etc. This command requests the dispatch of
the aforesaid value, as a Report data record [2 words]. This command and WRrTE
ENTRY have some common entries. Appendix I contains a cumulative list and
description.

WRITE ENTRY[4] value entry-id
The complement Of READ ENTRY. Appendix I contains a tentative list and description.
No response required.

SAMPLE[51 object-id event-number
This is a request for a particular event on a specified object to be sampled and sent
back to SIMON as an EVENT RECORD. The semantics for this command is system-
dependent.

END[6] This indicates the last (physically) command in this packet.

11.4.3. Data Format (Cm *to Simon)
Normally the resident monitor picks up every event it receives and puts it into an EFTPAck packet for

transmission when it receives an EFTPData packet from SIMON -- such items are called EVENT RECORDS.

Response to specific enquiries, immediate (READ ENTRY) or instigated (CHECKPOINT) is made using the
REPORT and CHECK data records, respectively. The termination of a data packet is indicated by a LAST

RECORD record.

174

Should a particularly unpleasant situation be discovered by the resident monitor there is provision for

notification of the error to SIMON using an ERROR data record. This will occupy three words, the second

word being an error number, and the third being extra information (if necessary). Of course this only

makes sense if SIMON is respondingl

<- Type -X- Length(words) -X. Parameters.>
byte byte 1 or more words each

The length specifies the number of words of parameters. The following summarises the types and gives

an index number for each which is intended for use within the implementation.

EVENT RECORD[1] object-id (of sensor) event-number object-id (of object) optional fields
This record type is sent in response to a SAMPLE command and whenever an event is
sent to the resident monitor by a sensor. The top byte is 0 and the object-id of the
sensor is in the next 3 bytes. The next byte holds the event-number and the next three
bytes, the object-id of the object. The optional fields follow, word-aligned.

REPORT[2] entry-id value[2 words]

In response to a READ ENTRY.

CHECK[3] timestamp[2 words]
In response to a CHECKPOINT. The timestamp is the monitor-saw-it-when time. This
data record is generated after all of the event records relating to this object-type have
been removed from internal buffers and sent to SIMON. In future versions, an object-id
parameter may be added.

LAST RECORD[4] word-count[1 word]
The physically last record within a data packet. The count tells how many words of
data there were waiting to be sent when this packet was sent.

ERROR[5] error-number[1 word] additional information [2 words]
Panic time. The resident monitor has discovered something amiss (see Appendix II for
a list of possible errors).

NEW NAME[6] object-id timestamp[2 words]
The object corresponding to this object-id has been deleted by the operating system at
this time. Any reference to this object-id in the future (i.e., with a later timestamp) will
involve a different object. Note that SIMON might never have heard about this object-id
before.

11.5. Simon Description Page Format
A Simon Description Page contains information which is specially formatted to allow easy transmission

over the EtherNet to SIMON. There are currently two types of Simon Description Pages, both associated

with task forces: SensorDescription and NamingDescription. The location of the page is of course system-

I - = , _ | I

175

dependent. These pages are produced by a preprocessor from sensor description file (SDF), or a naming

description file (NDF), respectively. For infcrmation on the contents of this page, see the Sensor

Description File Specification.

A Simon Description Page is formatted as a contiguous list of words (a read-only page in Medusa and a

data-only basic object in StarOS) containing one or more triples. The first two elements of each triple are

integers; the third is either an integer (if the first element is positive) or a string (if the first element is

negative). A first element of zero indicates that there are no more triples. A string is encoded as a

zero-terminated sequence of bytes. All elements are word-aligned.

The RequestSensorDescription sensor (an internal sampled event) will send the triples from the

SensorDescription page of the object designated by the object-id over as SimonDescriptionlnteger and

SimonDescriptionString event records. These events are both internal traced events.

1 1.6. Initial Connection
When the resident monitor first comes up on Cm* (presumably when the operating system is booted), it

will open the correct socket (see below) and wait for a packet to be delivered to this socket. All monitoring

activity should be turned off while the resident monitor is in this initial state. The initiation of

communication will be carried out by SIMON sending a EFTPData packet to the following socket on Cm*28

Host Net: # 52 (CMU local network)
Host Number: # 222 (CML2) for Medusa, 4 223 (CML5) for StarOS
Socket Number: # 135,0 (low,high)

The sequence number carried by this initial packet will be (0,0). The initial packet from SIMON will also

carry the net, host and socket on which SIMON is living. These will be picked up the Cm process and used

thereafter. Note that this allows SIMON to live anywhere. The data contained in this first packet has not

been specified. The resident monitor will respond, as always, with an EFTPAck packet. The data in this

packet has also not been specified, except that it must include the object-id of the resident monitor.

When SIMON first makes contact with the resident monitor, it knows of three events:

RequestSensorDescription, SimonDescriptionlnteger, and SimonDescriptionString. The second packet

sent to the resident monitor will contain exactly four commands:

28in the first implementation, the socket number will be fixed. Later versions may use a rendevous protocol to determine the
correct socket.

176

AdjustObject <enable SensorDescriptionlnteger>

AdjustObject <enable SensorDescriptionString>

AdjustObject <enable RequestSensorDescription>

End

The third command instructs the resident monitor to send over the Sensor Description associated with

the resident monitor; the RequestSensorDescription is an internal sampled event. Once SIMON receives all

of these event records, it will be able to communicate fully with the resident monitor.

11.7. Interaction with Simon

11.7.1. Simon Names
The names (object-ids) stored in event records received by SIMON are unique except for reuse after

deletion on Cm0. However, each Simon name must uniquely specify a Cm* object. An epoch (essentially

a 8-bit counter) will be used to convert an object-id into a Simon name. Associated with each object-id will

be a list of timestamp-epoch pairs. Initially, the list will contain one pair, with a timestamp of 0 and an

epoch of 0. Whenever a NEW NAME data record is received, a new pair will be added to the appropriate list

(determined by the object-id of the data record), with an epoch one greater than the last epoch and a

timestamp equal to that in the data record. As event records flow over from Cm *, each 24-bit object-id will

be converted to a 32-bit Simon name by concatenating the epoch which was valid when the event record

was stored (usually the last epoch in the list). If no timestamp was associated with this event record, then

the current epoch is used. Conversely, when a Simon name is to be sent to the resident monitor on Cm*,

the epoch is first stripped off of the name. If the epoch is not the current epoch, then the command

containing the Simon name must be discarded. Otherwise, the object-id portion of the Simon name is

sent.

11.7.2. Event Numbers

The event number stored in an EVENT RECORO does not uniquely specify a primitive relation, since event

numbers are allocated per task force and event per objecttype or sensorprocess by the SDF preprocessor

(see chapter 11.5). The correspondence depends on whether the event is an internal or an external one.

If the event is internal, then the actual event is determined by the object-id of the activity (process)

containing the sensor which stored the event record. This field identifies the sensorprocess described by

one of the SensorDescriptions sent over by the resident monitor. The events associated with this

177

sensorprocess are searched for one with the sensorindex attribute equal to the event number.

If the event is an external one, the object-id is used to identify the objecttype (also found in a

SensorDescription); the events associated with this objecttype are searched for one with the objectindex

attribute equal to the event number.

I:

I-

179

Appendix V
Readable and Writable Entries

Entry r~aluel Description

* # # [?) Maximum number of messages to be processed by a MEDIC Packet Filler before it goes
back to sleep.
[Read/Write]

* # # [?] Number of commands to be performed by the MEDIC Command Server before it goes
back to sleep.
[Read/Write]

pIGN1hl PAW SAMA I.nQ? I

181

Appendix VI
Errors found by the Resident Monitor

Error [Value] Parameter
Description

#1
In danger of losing information because buffers are getting full.

[?] Bad Sequence Number
Out of sequence packet arrived. (Useful for looking at the EtherNet performance and
for debugging.)

[?J Bad Type
Packet with a bad type arrived. (Useful for looking at the EtherNet performance and for
debugging).

[?] Sequence Number
No END in the command packet.

[?] object-id
Invalid object-id sent in a command packet.

I?] object-id
ReceptacleSet overflow; lost information concerning this object.

[?] object-type
ReceptacleSet overflow; lost information concerning this object type.

PEEED14 PAMg sumh-14o, flJJ

182

References

[1] R.A. Arbuckle.
Computer Analysis and Thruput Evaluation.
Computers and Automation , Jan., 1966.

[2] R.G. Arnold and E.W. Page.
A Hierarchical Restructurable Multi-Microprocessor Achitecture.
In Proceeding of the 3rd Annual Symposium on Computer Architecture, pages 44-45. January,

1976.

[3] J.L. Baer.
A Survey of Some Theoretical Aspects of Multiprocessing.
Computing Surveys 5(1):31-80, March, 1973.

[4] J.E.Ball, J.A. Feldman, J.R. Low, R.F. Rashid, P.D. Rovner.
RIG, Rochester's Intelligent Gateway: System Overview.
IEEE Trans. on Soft. Eng. SE-2(4), December, 1976.

[5] G. H. Barnes, R. M. Brown, M. Kato, D. J. Kuck, D. L. Slotnick, and R. A. Stokes.
The ILLIAC IV computer.
IEEE Transactions on Computers C-17:746.757, August, 1968.

[61 G. M. Baudet.
The design and analysis of algorithms for asynchronous multiprocessors.
PhD thesis, Carnegie-Mellon University, April, 1978.

(71 Bliss- II Programmers Manual
Computer Science Department, Carnegie Mellon University, Pittsburgh, PA 15213,1974.

[81 W. Bucholz.
A Synthetic job for measuring System Performance.
IBM Systems Journal :309-318, 1969.

[9] Michael J. Carey.
Parallel processing for power system transient simulation: a case study.
Master's thesis, Carnegie-Mellon University, December, 1980.

[10] V. Cerf.
Multiprocessors, Semaphores and a Graph Model of Computation.

Technical Report 7223, Computer Science Department, UCLA, April, 1972.

[11] D.R. Cheriton, M.A. Malcolm, L.S. Melen, and G.R. Sager.
Toth, a Portable Real-Time Operating System.
Communications of the ACM 22(2):105-115, Feb., 1979.

[12] W.W. Chu, L.J. Holloway, Min-Tsung Lan, and K. Efe.
Task Allocation in Distributed Processing.
Computer, IEEE :57-69, Nov., 1980.

183

[13] Jaroslaw Deminet.
Experience with Multiprocessor Algorithms.
IEEE Transactions on Computers C-31(4):278 -87, April, 1982.

[14] W.J. Dahl, E.W. Dijkstra, and C.A.R. Hoare.
Structured Programming.
Academic Press, New York, 1972.

[15] R.C. Dugan, I. Durham, and S.N. Talukdar.
An algorithm for power system simulation by parallel processing.
In Text of abstracts, Summer Power Meeting. IEEE Power Engineering Society, 1979.

[16] I. Durham, R.C. Dugan, A.K. Jones, and S.N. Talukdar.
Power system simulation on a multiprocessor.
In Text of abstracts, Summer Power Meeting. IEEE Power Engineering Society, 1979.

[17] G. Estrin and R. Turn.
Automatic assignment of computations in a variable structure computer system.
IEEE Transactions on Electronic Computers, EC-12:747-754, Dec., 1963.

[18] Peter Feller.
Harpy.
In S. H. Fuller, A. K. Jones, and I. Durham (editors), Cm Review, pages 57 - 64. Computer Science

Department, Carnegie-Mellon University, June, 1977.

[191 Domenico Ferrari.
Workload Characterization and Selection in Computer Performance Measurement.
IEEE, Computer :18-24, July/August, 1972.

[20] S.H. Fuller and S.P. Harbison.
The C.mmp Multiprocessor.
Technical Report CMU-CS-78-148, Department of Computer Science, Carnegie-Mellon University,

1978.

[21] S.H. Fuller, J.K. Ousterhout, L. Raskin, P. Rubinfeld, P.S. Sindhu, and R.J..Swan.
Multi-microprocessors: An overview and working example.
Proceedings of the IEEE 66(2), Feb., 1978.

[221 Ilya Gertner.
Performance Evaluation of Communicating Processes.
PhD thesis, University of Rochester, 1980.

[23] K.P. Gostelow.
Flow of Control, Resource Allocation, and the Proper Termination of Programs.
PhD thesis, University of California, Los Angeles, Dec., 1971.

[24] A.N. Habermann.
An Overview of the Gandalf Project.
Carnegie-Mellon University, Computer Science, Res.Rev. 1978-1979, 1980.

,,I

184

[25] C.A.R. Hoare.
Monitors: An Operating System Structuring Concept.
CACM, October, 1974.

[26] C.J. Jenny.
Process Partitioning in Distributed Systems.
Digest of Papers NTC '77, 1977.

[27] A.K. Jones, R.J. Chansler, I. Durham, P.H. Feiler, D.A. Scelza, K. Schwans, and S.R. Vegdahl.
Programming Issues Raised by a Multiprocessor.
Proceedings of the IEEE 66(2):229-237, February, 1978.

[281 A.K. Jones and K. Schwans.
TASK Forces: Distributed Software for Solving Problems of Substantial Size.
In Proceedings of the Fourth International Conference on Software Engineering, pages 315-330.

IEEE, September, 1979.

[29] A. K. Jones, Robert J. Chansler, Jr., I. Durham, K. Schwans, and S. R. Vegdahl.
STAROS, a multiprocessor operating system for the support of task forces.
In Proceedings of the Seventh Symposium on Operating Systems Principles, pages 117 - 27.

ACM/SIGOPS, Asilomar Conference Grounds, Pacific Grove, California, December 10- 12,
1979.

[30] A.K. Jones, and Edward F. Gehringer, eds.
The Cm° Multiprocessor Project: A Research Review.
Technical Report, Computer Science Department, Carnegie Mellon University, July, 1980.

[31] Anita K. Jones and Edward F. Gehringer [eds.].
The Cm *multiprocessor project: A research review.
Technical Report CMU-CS-80-131 , Computer Science Department, Carnegie-Mellon University,

July, 1980.

[32] A.K. Jones, K. Schwans.
TASK forces: Distributed Software for solving problems of substantial size.
4th International Conference on Software Engineering :315-330, Sept., 1979.

[33] Anita K. Jones and Karsten Schwans.
TASK forces: Distributed software for solving problems of substantial size.
In Proceedings of the Fourth International Conference on Software Engineering. ACM/SIGSOFT,

Munich, September 14- 16,1979.

[34] A.K. Jones, R.J. Chansler, Jr., I. Durham, K. Schwans, and S.R. Vegdahl.
STAROS a Multiprocess Operating System for the support of Task Forces.
Proc. of the Seventh Symposium of 0.S. Principles :117.127, Sept., 1979.

[35] E.O. Joslin.
Application Benchmarks: the key to meaningful computer evaluations.
Proc. 20th ACM Net. Conf. :27-, 1965.

185

[36] Hisashi Kobayashi.
Modelling and Analysis: an introduction to system performance evaluation methodology.
Addision-Wesley Pub. Co., 1978.

[37] Henry F. Ledgard, and Michael Marcotty.
A Genealogy of Control Structures.
Communications of the ACM 18(11):629-, Nov., 1975.

[38] B. Liskov, ed.
Report on the Workshop on Fundamental Issues in Distributed Computing.
Op Sys Review 15(3), July, 1981.

[39] B. T. Lowerre.
The Harpy speech recognition system.
Technical Report, Computer Science Department, Carnegie-Mellon University, April, 1976.

[40] Henry C. Lucas, Jr.
Performance Evaluation and Monitoring.
Computing Surveys 3(3):79-91, Sept., 1971.

[41] Madhav V. Marathe.
Performance Evaluation at the hardware architecture level and the operating system kernel design

level.
PhD thesis, Department of Computer Science, Carnegie Mellon University, Dec., 1977.

[42] S. R. McConnel, D. P. Siewiorek, and M. M. Tsao. -

The measurement and analysis of transient errors in digital computer systems.
In FTCS9, pages 67 - 70. IEEE Computer Society, 1979.

[43] McGehearty, Patrick F.
Performance Evaluation of Multiprocessors under Interactive Workloads.
PhD thesis, Carnegie Mellon University, 1980.

[44] N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller.
Equation of state calculations by fast computing machines.
J. Chem. Phys. 21:1087 - 92, 1953.

[45] M. Model.
Monitoring System Behavior in a Complex Computational Environment.
Technical Report CSL-79-1, Xerox PARC, January, 1979.

[46] R. Medina-Mora and P.H. Feiler.
An Incremental Programming Environment.
IEEE Trans. Software Engineering , September, 1981.

[47] David E. Morgan, Walter Banks, Dale P. Goodspeed, Richard Kolanko.
A Computer Network Monitoring System.
IEEE Transactions on Software Engineering SE-1(3), Sept., 1975.

~L

186

[48] G.J. Nutt.
A Survey of Remote Monitors.
NBS Special Publication 500-42, January, 1979.

[491 N. S. Ostlund, P. G. Hibbard, and R. A. Whiteside.
A case study in the application of a tightly-coupled multiprocessor to scientific computations.
In B. Alder, S. Fernbach, and M. Rotenberg (editors), Parallel Computations,. Academic Press,

1982.

[50] J. K. Ousterhout, D. A. Scelza, and P. S. Sindhu.
MEDUSA: an experiment in distributed operating system structure.
Communications of the ACM 23(2), February, 1980.

[51] J.K. Ousterhout, D.A. Scelza, and P.S. Sindhu.
Medusa: an experiment in distributed operating system structure.
Communications of the ACM 23(2):92-105, Feb., 1980.

[52] R.F. Rashid.
A Network Operating System for a Distributed Sensor Network.
Technical Report, Carnegie-Mellon University, Computer Science Department, April, 1980.
Internal memo.

[53] R.F. Rashid.
An Inter-Process Communication Facility for UNIX.
Technical Report, Computer Science Department, Carnegie-Mellon University, March, 1980.
Available as CMU-CS-80-124.

[54] Levy Raskin.
Performance Evaluation of multiple processor systems.
PhD thesis, Carnegie Mellon University, Aug., 1978.

[55] Levy Raskin.
Performance evaluation of multiple processor systems.
PhD thesis, Carnegie-Mellon University, August, 1978.
Published as technical report CMU-CS-78-141.

[56] Dennis M. Ritchie and Ken Thompson.
The UNIX time-sharing system.
Communications of the ACM 17(7):365 - 75, July, 1974.

[57] E. Rosen.
Vulnerabilities of Network Control Protocols: An Example.
ACM SIGSOFT Soft Eng Notes, January, 1981.

[58] M. Satyanarayanan.
Multiprocessors: A Comparative Study.
Prentice-Hall Inc., 1980.

[59] Karsten Schwans.
Tailoring Software for Multiple Processor Systems.
PhD thesis, Department of Computer Science, Carnegie Mellon University, Fall, 1981.

187

[60] R. Sedgewick.
Implementing quicksort programs.
Communications of the ACM 21(10):847 -57, October, 1978.

[61] Z. Segall, A. Singh, R. Snodgrass, A. K. Jones, and D. P. Siewiorek.
An integrated instrumentation environment for multiprocessors.
To appear in IEEE Transactions on Computers.

[62] J. Shoch.
What's Different About 'Distributed Computing'?
1981.
in [38].

[631 W.L. Shope, K.L. Kashmarak, J.W. Inghram, and W.P. Decker.
System Performance Study.
Proc. SHARE 24:568-659, March, 1970.

[64] H. Shrobe.
Dependency Directed Reasoning for Complex Program Understanding.
PhD thesis, MIT, 1979.
Technical Report AI-TR-503.

[65] D. Siewiorek, M. Canepa, and S. Clark.
C.mmp: The Architecture of a Fault-Tolerant Multiprocessor.
In Proceeding of the Seventh Annual International Conference on Fault-Tolerant Computing, pages

37-43. June, 1977.

[66] A. Singh.
Pegasus: A Workload Generator for Multiprocessors.
Master's thesis, Carnegie-Mellon University, Department of Electrical Engineering, 1981.

[67] A.Singh and Z. Segall.
Synthetic Workload Generation for Experimentation with Multiprocessors.
To bc published 1982.

[68] T.B. Smith and A.L. Hopkins.
Architectural Description of a Fault-Tolerant Multiprocessor Engineering Prototype.
In Digest of Papers, Eighth Annual Conference on Fault-Tolerant Computing. June, 1978.

[69] Richard Snodgrass.
Monitoring Distributed Systems.
PhD thesis, Carnegie Mellon University, To be Published, 1982.

[70] Richard Snodgrass.
Monitoring distributed systems.
PhD thesis, Carnegie-Mellon University, 1982.
To be completed.

[71] Sreenivasan K., Kleinman A.J.
On the construction of a Representative Synthetic Workload.
CACM, 1974.

f4

188

[72] M. Stonebraker, E. Wong, P. Kreps, and G. Held.
The Design and Implementation of INGRES.
ACM TODS 1(3):189-222, September, 1976.

[73] Richard J. Swan.
The switching structure and addressing architecture of an extensible multiprocessor, Cm.
PhD thesis, Carnegie Mellon University, August, 1978.

[74] Richard J. Swan.
The switching structure and addressing architecture of an extensible multiprocessor, Cm.
PhD thesis, Carnegie-Mellon University, August, 1978.

[75] Sarosh N. Talukdar.
On using MIMD-type multiprocessors-some performance bounds, metrics, and algorithmic issues.
In Proceedings of the 10th Pittsburgh Modeling and Simulation Conference, pages 1167 - 73.

1979.

[76] S. N. Talukdar, M. J. Carey, and S. S. Pyo.
Multiprocessors for power system problems.
Joho-Shori (Information Processing Society of Japan) 22(12), December, 1981.

[77] T. Teitelbaum.
The Cornell Program Synthesizer: A Syntax Directed Programming Environment.
Technical Report TR80-421, Department of Computer Science, Cornell University, May, 1980.

[78] M. M. Tsao.
A study of transient errors on Cm.
Master's thesis, Carnegie-MellonUniversity, December, 1978.

[79] J.D. UlIman.
Principles of Database Systems.
Computer Science Press, Potomac, Maryland, 1980.

[80] L. Verlet.
Computer experiments on classical fluids. 1. Thermodynamic properties of Lennard-Jones

molecules.
Physical Review 159:98- 103, 1967.

[81] S.A Ward.
The MuNet: A Multiprocessor Message-Passing System Architecture.
In Prodeeding of the Seventh Texas Conference on Computing Systems, pages 7-21. November,

1978.

[82] D.C. Wood, and E.H. Forman.
Throughput measurements using synthetic job streams.
AFIPS Conf. Proc. (FJCC) 39:51-56, Nov., 1971.

[83] William A. Wulf, Roy Levin, and Samuel P. Harbison.
HYDRA/C.mmp: An Experimental Computer System.
McGraw-Hill, 1981.

g4

189

[84] W. Wulf, et at.
BULSS- 11 Programmer's Manual
Digital Equipment Corporation, 1970.

